Find the length of the arc. Use 3.14 for it.270°8 cm

Find The Length Of The Arc. Use 3.14 For It.2708 Cm

Answers

Answer 1

The radius of circle is r = 8 cm.

The arc is of angle 270 degree.

The formula for the arc length is,

[tex]l=2\pi r\cdot\frac{\theta}{360}[/tex]

Determine the length of the arc.

[tex]\begin{gathered} l=2\cdot3.14\cdot8\cdot\frac{270}{360} \\ =37.68 \end{gathered}[/tex]

So lenth of the arc is 37.68.


Related Questions

help meeeeeeeeee pleaseee !!!!!

Answers

The values of the functions are;

a. (f + g)(x) = x( 2 + 3x)

b. (f - g)(x) = 2x - 3x²

c. (f. g) (x) = 6x²

d.  (f/g)(x) = 2/ 3x

What is a function?

A function can be defined as an expression, rule, law or theorem that explains the relationship between two variables in a given expression

These variables are called;

The independent variablesThe dependent variables

From the information given, we have;

f(x) = 2xg(x) = 3x²

To determine the composite functions, we have;

a. (f + g)(x)

Add the functions

(f + g)(x)  = 2x + 3x²

Factorize the functions

(f + g)(x) = x( 2 + 3x)

b. (f - g) (x)

Subtract the functions

(f - g)(x) = 2x - 3x²

c. (f. g) (x)

Substitute the values of x as g(x) in f(x)

(f. g) (x) = 2(3x²)

(f. g) (x) = 6x²

d. (f/g)(x) = 2x/ 3x²

(f/g)(x) = 2/ 3x

Hence, the functions are determined by substituting the values of the dependent variables.

Learn more about functions here:

https://brainly.com/question/25638609

#SPJ1

Which of the following points is in the solution set of y < x2 - 2x - 8? O 1-2. -1) O 10.-2) 0 (4.0)

Answers

Given the functon

[tex]y

Explanation

To find the points that lie in the solution set we will lot the graph of the function and indicate the ordered pirs.

From the above, we can see that the right option is

Answer: Option 1

if q(x)= int 0 ^ x^ 3 sqrt 4+z^ 6 dz then

Answers

Solution:

Given that:

Finding the area of unusual shapes

Answers

The shape in question is a composite shape.

It comprises two(2) shapes which are a triangle and a semi-circle.

The area of the shape is the sum of the area of the triangle and that of the semi-circle

The area of the triangle is:

[tex]A_{triangle}=\frac{1}{2}\times base\times height[/tex][tex]\begin{gathered} \text{Base of the triangle =}6\text{ yard} \\ Height\text{ of the triangle= 4 yard} \end{gathered}[/tex]

Thus,

[tex]\begin{gathered} A_{triangle}=\frac{1}{2}\times6\times4 \\ A_{triangle}=12\text{ yards} \end{gathered}[/tex]

Area of the Semi-circle is:

[tex]A_{semi-circle}=\frac{\pi\times r^2}{2}[/tex][tex]\begin{gathered} \text{Diameter of the circle=6 yard} \\ \text{Radius}=\frac{Diameter}{2} \\ \text{Radius}=\frac{6}{2}=3\text{ yard} \end{gathered}[/tex][tex]\begin{gathered} A_{semi-circle}=\frac{3.14\times3^2}{2} \\ A_{semi-circle}=\frac{28.26}{2} \\ A_{semi-circle}=14.13\text{ yard} \end{gathered}[/tex]

Hence, the area of the composite shape is:

[tex]\begin{gathered} \text{Area of the triangle + Area of the semi-circle} \\ 12+14.13=26.13\text{ yard} \end{gathered}[/tex]

The revenue function R in terms of the number of units sold, a, is given as R = 300x - 0.4x^2where R is the total revenue in dollars. Find the number of units sold a that produces a maximum revenue?Your answer is x =What is the maximum revenue?

Answers

[tex]x=375\:un\imaginaryI ts\:generate\:a\:maximum\:revenue\:of\:\$56,250.00[/tex]

1) Considering the Revenue function in the standard form:

[tex]R(x)=-0.4x^2+300x[/tex]

2) Since this is a quadratic function, we can write out the Vertex of this function:

[tex]\begin{gathered} x=h=-\frac{b}{2a}=\frac{-300}{2(-0.4)}=375 \\ k=f(375)=-0.4(375)^2+300(375)\Rightarrow k=56250 \end{gathered}[/tex]

3) So, we can answer this way:

[tex]x=375\:units\:yield\:\$56,250[/tex]

how do you find the sale price of the item if original price $71 and mark down to 34% the sale price is

Answers

Answer:

The sale price is $46.86

Explanation:

Given an original price of $71, and a markdown of 34%

The sale price is:

$71 - (34% of $71)

= $71 - (0.34 * $71)

= $71 - $24.14

= $46.86

Answer:

The sale price is $46.86

Explanation:

Given an original price of $71, and a markdown of 34%

The sale price is:

$71 - (34% of $71)

= $71 - (0.34 * $71)

= $71 - $24.14

= $46.86

Write the equation for a parabola with a focus at (1,2) and a directrix at y=6

Answers

Solution:

Given:

[tex]\begin{gathered} focus=(1,2) \\ directrix,y=6 \end{gathered}[/tex]

Step 1:

The equation of a parabola is given below as

[tex]\begin{gathered} y=\frac{1}{4(f-k)}(x-h)^2+k \\ (h,f)=focus \\ h=1,f=2 \end{gathered}[/tex]

Step 2:

The distance from the focus to the vertex is equal to the distance from the vertex to the directrix:

[tex]\begin{gathered} f-k=k-6 \\ 2-k=k-6 \\ 2k=2+6 \\ 2k=8 \\ \frac{2k}{2}=\frac{8}{2} \\ k=4 \end{gathered}[/tex]

Step 3:

Substitute the values in the general equation of a parabola, we will have

[tex]\begin{gathered} y=\frac{1}{4(f-k)}(x-h)^{2}+k \\ y=\frac{1}{4(2-4)}(x-1)^2+4 \\ y=-\frac{1}{8}(x-1)^2+4 \\ \end{gathered}[/tex]

By expanding, we will have

[tex]\begin{gathered} y=-\frac{1}{8}(x-1)^{2}+4 \\ y=-\frac{1}{8}(x-1)(x-1)+4 \\ y=-\frac{1}{8}(x^2-x-x+1)+4 \\ y=-\frac{1}{8}(x^2-2x+1)+4 \\ y=-\frac{x^2}{8}+\frac{x}{4}-\frac{1}{8}+4 \\ y=-\frac{x^2}{8}+\frac{x}{4}-\frac{1+32}{8} \\ y=-\frac{x^2}{8}+\frac{x}{4}+\frac{31}{8} \end{gathered}[/tex]

Hence,

The final answer is

[tex]\begin{gathered} \Rightarrow y=-\frac{x^{2}}{8}+\frac{x}{4}+\frac{31}{8}(standard\text{ }form) \\ \Rightarrow y=-\frac{1}{8}(x-1)^2+4(vertex\text{ }form) \end{gathered}[/tex]

For the quadratic function, identify any horizontal or vertical translations. Enter "0" and "none" if there is none.f(x) = (x + 5)² - 4Horizontal:__ units to the (Select an answer (right, left, none)Vertical:__ units to the (Select an answer ( up, down, none)

Answers

Given:

[tex]f(x)=(x+5)^2-4[/tex]

The parent function of the given function (x²)

We will find the horizontal or vertical translations to get the given function.

the general form of the translation will be as follows:

[tex]f(x\pm a)\pm b[/tex]

Where (a) is the horizontal translation and (b) is the vertical translation

Comparing the given equation to the formula:

[tex]a=5,b=-4[/tex]

So, the answer will be:

Horizontal: 5 units to the left

Vertical: 4 units down

Triangle LMN is drawn with vertices at L(−2, 1), M(2, 1), N(−2, 3). Determine the image vertices of L′M′N′ if the preimage is rotated 90° clockwise. L′(1, 2), M′(1, −2), N′(3, 2) L′(−1, 2), M′(−1, −2), N′(−3, 2) L′(−1, −2), M′(−1, 2), N′(−3, −2) L′(2, −1), M′(−2, −1), N′(2, −3)

Answers

ANSWER

L'(1, 2), M'(1, -2), N'(3, 2)

EXPLANATION

The rule for rotating a point (x, y) 90° clockwise is,

[tex](x,y)\rightarrow(y,-x)[/tex]

So, the vertices of triangle LMN will be mapped to,

[tex]\begin{gathered} L(-2,1)\rightarrow L^{\prime}(1,2) \\ M(2,1)\rightarrow M^{\prime}(1,-2) \\ N(-2,3)\rightarrow N^{\prime}(3,2) \end{gathered}[/tex]

Hence, the image has vertices L'(1, 2), M'(1, -2), N'(3, 2).

The Leaning Tower of Pisa
was completed in 1372 and
makes an 86* angle with
the ground. The tower is
about 57 meters tall, measured
vertically from the ground
to its highest point. If you
were to climb to the top and
then accidently drop your
keys, where would you
start looking for them?
How far from the base of.
the tower would they land?

Answers

The distance where the keys would drop from the base is 3.5m

Calculation far from the base of tower?

Height of the tower = 57m

Angle it makes to the ground = 86°

To solve this question, you have to understand that the tower isn't vertically upright and the height of the tower is different from the distance from the top of the tower to the ground.

The tower makes an angle 86° to the ground and that makes it not vertically straight because a vertically straight building is at 90° to the ground.

The distance from where the keys drop to the base of the tower can be calculated using

We have to use cosθ = adjacent / hypothenus

θ = 86°

Adjacent = ? = x

Hypothenus = 57m

Cos θ = x / hyp

Cos 86 = x / 57

X = 57 × cos 86

X = 57× 0.06976

X = 3.97 = 4m

The keys would fall from the tower's base at a distance of about 4 meters.

To learn more about  far  from the base refer  to:

https://brainly.com/question/9624014

#SPJ13

45 + 54 = 99 times ( ) + ( )

Answers

a) You have to find the greatest common factor for the values 45 and 54

To do so you have to determine the factors for each value and determine the highest value both numbers are divisible for.

Factors of 45 are

1, 3, 5, 9, 15, 45

Factors of 54 are

1, 2, 3, 6, 9, 18, 27, 54

The greatest common factor is 9, this means that you can divide both numbers by 9 and the result will be an integer:

[tex]\frac{45}{9}=5[/tex][tex]\frac{54}{9}=6[/tex]

b) Given the addition

[tex]45+54[/tex]

You have to factorize the adition using the common factor.

That is to "take out" the 9 of the addition, i.e. divide 45 and 54 by 9 and you get the result (5+6) but for this result to be equvalent to the original calculation, you have to multiply it by 9

[tex]45+54=9(5+6)[/tex]

How long will it take money to double if it is invested at the following rates?(A) 7.8% compounded weekly(B) 13% compounded weekly(A) years(Round to two decimal places as needed.)

Answers

Answer:

Explanation:

A) We'll use the below compound interest formula to solve the given problem;

[tex]A=P(1+r)^t[/tex]

where P = principal (starting) amount

A = future amount = 2P

t = number of years

r = interest rate in decimal = 7.8% = 7.8/100 = 0.078

Since the interest is compounded weekly, then r = 0.078/52 = 0.0015

Let's go ahead and substitute the above values into the formula and solve for t;

[tex]\begin{gathered} 2P=P(1+0.0015)^t \\ \frac{2P}{P}=(1.0015)^t \\ 2=(1.0015)^t \end{gathered}[/tex]

Let's now take the natural log of both sides;

[tex]\begin{gathered} \ln 2=\ln (1.0015)^t \\ \ln 2=t\cdot\ln (1.0015) \\ t=\frac{\ln 2}{\ln (1.0015)} \\ t=462.44\text{ w}eeks \\ t\approx\frac{462.55}{52}=8.89\text{ years} \end{gathered}[/tex]

We can see that it will take 8.89 years for

B) when r = 13% = 13/100 = 0.13

Since the interest is compounded weekly, then r = 0.13/52 = 0.0025

Let's go ahead and substitute the values into the formula and solve for t;

[tex]\begin{gathered} 2P=P(1+0.0025)^t \\ \frac{2P}{P}=(1.0025)^t \\ 2=(1.0025)^t \end{gathered}[/tex]

Let's now take the natural log of both sides;

[tex]\begin{gathered} \ln 2=\ln (1.0025)^t \\ \ln 2=t\cdot\ln (1.0025) \\ t=\frac{\ln 2}{\ln (1.0025)} \\ t=277.60\text{ w}eeks \\ t\approx\frac{2.77.60}{52}=5.34\text{ years} \end{gathered}[/tex]

May I please get help with describing each or the math problems

Answers

From the given traingles, let's select the correct statements.

(a) Select all that describe BD.

Here, the line BD divides angle B into 2 equal parts. It means BD bisects ∠D.

An angle bisector is a line that divides an angle into two equal angles.

Hence, we can say BD is an angle bisector of ∠B.

(b) Select all that describe HI.

Since m∠FIH is a right triangle, it means ∠HIG is also a right triangle.

Also, the line HI originates from the vertex.

Since. the it forms a right angle, we can say HJ is an altitude of the triangle FGH.

Hence, HJ is an altitude of ΔFGH.

(c) Select all that describe MN.

Here, we can see that line MN divides the line segment KL into two equal parts, it means that point M is the median of the line segment KM and the pperpendicular bisector of line segment KL.

A perpendicular bisector is a line segment that divides another line segement into two equal parts.

KM = LM

Hence, MN is the perpendicular bisector of KL.

ANSWER:

• (a) Angle bisector of ∠B.

,

• (b) Altitude of ΔFGH.

,

• (c) Perpendicular bisector of KL.

Which is equal to 2 over 5? A. 2%B. 2.5%C. 20%D. 25%E. 40%

Answers

Calculating the value of 2 over 5 in percentage, we have:

[tex]\begin{gathered} \frac{2}{5}=\frac{20}{50}=\frac{40}{100}=40\text{\%} \\ or \\ \frac{2}{5}=0.4=40\text{\%} \end{gathered}[/tex]

So the correct option is E.

A car is traveling at a speed of 70 kilometers per hour. What is the car's speed in miles per hour? How many miles will the car travel in 5 hours? In your computations, assume that 1 mile is equal to 1.6 kilometers. Do not round your answers.

Answers

What is the car's speed in miles per hour?

Let's make a conversion:

[tex]\frac{70\operatorname{km}}{h}\times\frac{1mi}{1.6\operatorname{km}}=\frac{43.75mi}{h}[/tex]

How many miles will the car travel in 5 hours?

1h---------------------->43.75mi

5h---------------------> x mi

[tex]\begin{gathered} \frac{1}{5}=\frac{43.75}{x} \\ x=5\times43.75 \\ x=218.75mi \end{gathered}[/tex]

pleaseee help meeee For questions 9 - 10, answer the question about inverses. 9. The function m(d) below relates the miles Bob can drive his rental car and the numbers of dollars it will cost. 10. The function a(h) below relates the area of a triangle with a given base 7 and the height of the triangle. It takes as input the number of dollars spent and returns as output the number of miles. It takes as input the height of the triangle and returns as output the of the triangle. m(d) = 40(d- 35) ain= Write the equation that represents the inverse function, d(m), which takes the number of miles driven, m, as input and returns the number of dollars owed, d. Write the equation that represents inverse function, h(a), which takes triangle's area as input and returns height of the triangle.

Answers

First problem:

Find the inverse of the function

m = 40 (d - 35)

Recall that for the inverse function we need to solve for d in terms of m (reverse the dependence), so we proceed to isolate d on the right hand side of the equation:

divide both sides by 40

m/40 = d - 35

now add 35 to both sides:

m/40 + 35 = d

The inverse function (dollars in terms of miles) is given then by:

d(m) = 1/40 m + 35

Second problem:

a = 7 * h / 2

in order to find the inverse function (as h in terms of a) we solve for h on the right hand side of the equation as shown below:

multiply both sides by 2:

2 * a = 7 * h

now divide both sides by 7 in order to isolate h on the right

2 a / 7 = h

So our inverse function of height in terms of area is given by:

h(a) = (2 a) / 7

On the planet Alaber, there are 15 dubbles to every 13 rews. If farmer Mimstoon has 100 rews on his frent farm, how many dubbles are on the farm?

Answers

You have that on planet Alaber, there are 15 dubbles to every 13 rews. This proportion can be wrtten as 15:13, or 15/13.

In order to calculate how many dubbles are on the farm, while there are 100 rews. You use the previous ratio and proceed as follow:

15/13 = x/100 where x is the unknown number of dubbles

This is because the ratio between dubbles and rews must be the same.

You solve the previous equation as follow:

15/13=x/100 multiply both sides by 100 to cancel the denomitaro 100 right side

15/13(100) = x/100(100)

1500/13 = x

In order to write the previous result as a mixed number you divide numerator and denominator:

1500 | 13

143 115

70

65

5

Then, x = 1500/13 is also equal to:

x = 115 13/5

This means there are approximately 115 dubbles for 100 rews

I need help with this

Answers

[tex]\begin{gathered} BC\text{ and CD are perpendicular, which means that m}\angle C=90\text{ degrees} \\ \\ \text{The problem says that m}\angle C=5x+15 \\ \\ 5x+15=90\text{ Because they're referring to the same angle} \end{gathered}[/tex]

Give the following numberin Base 2.7710 = [ ? ] 2Enter the number that belongs in the green box.

Answers

To convert a number on base 10 to binary(base 2), we use the following steps

1 - Divide the number by 2.

2 - Get the integer quotient for the next iteration.

3 - Get the remainder for the binary digit.

4 - Repeat the steps until the quotient is equal to 0.

Using this process in our number, we have

Then, we have our result

[tex]77_{10}=1001101_2[/tex]

Find the minimum or maximum value of the function f(x)=8x2+x−5. Give your answer as a fraction.

Answers

Answer

Minimum value of the function = (-41/8)

Explanation

The minimum or maximum of a function occurs at the turning point of the graph of the function.

At this turning point, the first derivative of the function is 0.

The second derivative of the function is positive when the function is at minimum and it is negative when the function is at maximum.

f(x) = 8x² + 2x - 5

(df/dx) = 16x + 2

At minimum or maximum point,

16x + 2 = 0

16x = -2

Divide both sides by 16

(16x/16) = (-2/16)

x = (-1/8)

Second derivative

f(x) = 8x² + 2x - 5

(df/dx) = 16x + 2

(df²/d²x) = 16 > 0, that is, positive.

So, this point is a minimum point.

f(x) = 8x² + 2x - 5

f(-1/8) = 8(-1/8)² + 2(-1/8) - 5

= 8 (1/64) - (1/4) - 5

= (1/8) - (1/4) - 5

= (1/8) - (2/8) - (40/8)

= (1 - 2 - 40)/8

= (-41/8)

Hope this Helps!!!

Express $20.35 as an equation of working h hours, when I equals income

Answers

Let

I ------> income in dollars

h -----> number of hours

$20.35 is the hourly pay

so

the linear equation that represent this situation is

I=20.35*h

help meeeeeeeeee pleaseee !!!!!

Answers

The addition of the given functions f(x) and g(x) is equal to the expression  x^2+ 3x + 5

Composite function.

Function composition is an operation that takes two functions, f and g, and creates a function, h, that is equal to g and f, such that h(x) = g.

Given the following functions

f(x) = x^2 + 5

g(x) = 3x

We are to determine the sum of both functions as shown;

(f+g)(x) = f(x) + g(x)

Substitute the given functions into the formula

(f+g)(x) = x^2+5 + 3x

Write the expression in standard form;

(f+g)(x) = x^2+ 3x + 5

Hence the sum of the functions f(x) and g(x) is equivalent to  x^2+ 3x + 5

Learn more on sum of functions here: https://brainly.com/question/17431959

#SPJ1

(statistics) solve part A, B, and C in the question on the picture provide, in 1-3 complete sentences each.

Answers

(a.) First let's define the terms;

Population - it is the pool of individual in which a statistical sample is drawn.

Parameter - it is a measure of quantity that summarizes or describes a Population.

Sample - is a smaller and more managable version of a group or population.

Statistics - same with parameter but rather than the population, it summarizes or describes

the sample.

Now that we know the definitions we can now answe the letter a;

Population: Students

Parameter: the population portion of the new students that like the new healthy choices (p)

Sample: 150 students

Statistics: estimated propotion of the students that like the new healthy choices (p-hat)

(b) P-hat = 0.6267 simply means that 62.67% of the 150 sample students like the new healthy choices.

(c) The answer for that is NO, because the simulated propotion which is shown by the graph seems to be equally distributed below and above 0.7. To support the claim of the manager most of the dots should be below 0.7 to show support to his claim that 70% of the new students like the new healthy choices.

Write an equation that represents a reflection in the y-axis of the graph of g(x)=|x|.

h(x)= ?

Answers

the reflection of the function g(x)=|x| in the y-axis will be h(x) = |x|  

What is reflection in coordinate geometry ?

this represents the flip or mirror image of transformation about the given axis.

For every point in the plane (x, y), a 90° rotation can be described by the transformation P(x, y) → P'(-y, x). We can achieve this same transformation by performing two reflections.

Here, the given function is :

g(x)=|x|

Now, the reflection in the y-axis will be same that is :

h(x)= g(x)

h(x) = |x|

Therefore, the reflection of the function g(x)=|x| in the y-axis will be h(x) = |x|  

Read more about Reflection at:

https://brainly.com/question/12150665

#SPJ1

Question 11 5 pts Find the value of x. Round to the nearest tenth. х 329 12. Not drawn to scale a. 10.2 b. 14.3 C. 10.4 d. 14.2

Answers

[tex]d)x=14.2[/tex]

Explanation

Step 1

Let

angle= 32

hypotenuse=x

adjacent side=12

so, we need a function that relates angel, hypotenuse and adjacent side

[tex]\text{cos}\emptyset=\frac{adjacent\text{ side}}{\text{hypotenuse}}[/tex]

replace,

[tex]\begin{gathered} \text{cos}\emptyset=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \text{cos32}=\frac{12}{\text{x}} \\ \text{Multiply both sides by x} \\ x\cdot\text{cos32}=\frac{12}{\text{x}}\cdot x \\ x\cdot\text{cos32}=12 \\ \text{divide both sides by cos 32} \\ \frac{x\cdot\text{cos32}}{\cos \text{ 32}}=\frac{12}{cos\text{ 32}} \\ x=14.15 \\ rounded \\ x=14.2 \end{gathered}[/tex]

so, the answer is

[tex]d)x=14.2[/tex]

I hope this helps you

find the solution to the following system by substitution x + y = 20 y = 3x 8

Answers

Based on the substitution method, the solution of the system of the equation is x = 3 and y = 17.

Substitution method:

Substitution method is the way of finding the value of any one of the variables from one equation in terms of the other variable.

Given,

Here we have the system of equations

x + y = 20

y = 3x + 8

Now we need to find the solutions for these equation using the substitution method.

From the given details we know that the value of y is defined as 3x + 8.

So, we have to apply these value on the other equation in order to find the value of x,

x + (3x + 8) = 20

4x + 8 = 20

4x = 20 - 8

4x = 12

x = 3

Now apply the value of x into the other equation in order to find the value  of y,

y = 3(3) + 8

y = 9 + 8

y = 17

Therefore, the solution of the equation is x = 3 and y = 17.

To know more about Substitution method here.

https://brainly.com/question/14619835

#SPJ1

Write the slope-intercept form of the equation of the line graphed on the coordinate plane.

Answers

The slope-intercept form is:

[tex]y\text{ = mx + b}[/tex]

We have to find these coefficients. To do that we have to choose two points in the graph and apply the following formula. I will use (0,1) and (-1,-1). The formula is:

[tex]y-yo\text{ = m(x-xo)}[/tex]

The formula of the coefficient 'm' is:

[tex]m\text{ = }\frac{y2-y1}{x2-x1}[/tex]

Let's substitute the points into the formula above to find the value of m. Then we use one of the points to find the slope-intercept form of the equation:

[tex]m\text{ = }\frac{-1-1}{-1-0}=2[/tex]

Applying it to the second equation using the point (0,1):

[tex]y-1=2(x-0)[/tex]

[tex]y=2x+1[/tex]

Answer: The slope-intercept form of the equation will be 2x+1.

For the bird, determine the following: The maximum height The axis of symmetry The total horizontal distance travelled A quadratic equation written in vertex form

Answers

Explanation:

The table of values is given below as

Using a graphing tool, we will have the parabola represented below as

Draw the angle 0=-pi/2 in standard position find the sin and cos

Answers

An angle in standard position has the vertex at the origin and the initial side is on the positive x-axis.

Thus, the initial side of the angle is:

Now, half the circumference measures pi, thus, pi/2 is a quarte of the circumference. As we want to find the angle -pi/2, then we need to rotate the terminal side clockwise:

Find the sine and the cosine.

The sine and the cosine in the unit circle are given by the coordinates as follows:

[tex](\cos\theta,\sin\theta)[/tex]

As can be seen in the given unit circle, the terminal side is located at:

[tex](0,-1)[/tex]

Thus, the values of cosine and sine are:

[tex]\begin{gathered} \cos\theta=0 \\ \sin\theta=-1 \end{gathered}[/tex]

if Maria collected R rocks and Javy collected twice as many rocks as Maria and Pablo collected 5 less than Javy. What is the sum of rocks collected by Pablo and Maria?

Answers

This problem deals with the numbers expressed in a more general way: letters or variables

That belongs to Algebra

We know Maria collected R rocks. Let's put this in a separate line:

M = R

Where M is meant to be the number of rocks collected by Maria

Now we also know Javy collected twice as many rocks as Maria did. Thus, if J is that variable, we know that

J = 2R

Pablo collected 5 less rocks than Javy. This is expressed as

P = J - 5

or equivalently:

P = 2R - 5

since J = 2R, as we already stated

We are now required to calculate the sum of rocks collected by Pablo and Maria.

This is done by adding P + M:

P + M = (2R - 5) + (R)

We have used parentheses to indicate we are replacing variables for their equivalent expressions

Now, simplify the expression:

P + M = 2R - 5 + R

We collect the same letters by adding their coefficients:

P + M = 3R - 5

Answer: Pablo and Maria collected 3R - 5 rocks together

Other Questions
3 A free diver can dive at a rate of -0.75 meters per second. About how long would it take to reach a depth of -145 meters? patty is a doctoral student in psychology. what can she use to complete her doctoral paper, asking individuals to self-report important information about how their thoughts, experiences, and beliefs differ over a 10-year period? What is the value of (145) 82 (17)?\ A reflection across which line(s) carries the trapezoid onto itself? Water from the sprinkles started to rust the brand new child's bike correct sentence and say misplaced and dangling modifires Robin is saving money to buy a 720$ phone. she has 105$ saved, and each week she adds 30$ to her savings. write an equation to find the number of weeks (w) until she has enough savings to buy the phone. Analysis questions: 1. Find the slope of the line that goes through donuts 1-12. Find the slope of the line that goes from donuts 13-25. Are they the same or not?| 2. What if we only buy in amounts of baker's dozens? Is there a line for those? What points are on this line? What is the slope? 3. How much money do you save with the baker's dozen deal on 30 donuts? Where can this amount be seen on the graph? there are 14 square and 18 rectangles. what is the simplest ratio of squares to rectangles? Any student who has not paid his or her tuition fee by the first of the term or who has not made arrangements with the bursars office for delayed payment, will be automatically required to withdraw from the university There are 39 chocolates In a box call identically sheet dear 16 off filled with nuts 13 with caramel and 10 are solid chocolate you randomly select one piece eat it and then select a second piece find the probability of selecting to solid in a row In a short answer where you include textual evidence for your support, answer the following question.The story takes place during the Franco-Prussian War. What state is Paris in at the beginning of the story? 2. Which of these has correct capitalization and punctuation?A Henry said let's go play tennis with them.B Henry said, let's go play tennis with them.(C Henry "said Let's go play tennis with them.(D Henry said, "Let's go play tennis with them." It goes from -1 to 1 on the x axis. 3. Napoleon was not present during the Battle of the Cowshed. What does this tell us about thekind of leader he is?(10 Points)a. It tells us he was rightfully watching from afarb. It tells us he is not a very hands own, involved leader.c. It tells us that he did not have a pland. It tells us that he was sick and couldn't fight. The area (in square inches) of a rectangle is given by the polynomial function A(b)=b^2 +9b+18. If the width of the rectangle is (b+3) inches what is the length? Ronda ate 2/5 of the pie. Connor ate .375 of the pie. How much did they eatcombined? (Express your answer either as a fraction or decimal) The conversion of solar energy into the chemical energy of a carbohydrate occurs during the process of. Damion, a single dad who will use the head of household filing status, has three children, Dominic (5), Julian (9), and Elijah (16). Damion's adjusted gross income is $72,000, and his 2021 tax liability is $6,103. All three children have valid social security numbers, a U.S. citizens, and are his qualifying child dependents. Damion did not receive any advance Child Tax Credit payments during the year. Neither Damion nor the children's mother have ever signed Form 8332, Release/Revocation of Release of Claim to Exemption for Child by Custodial Parent. What amount is Damion able to claim for the total of his Child Tax Credit and credit for other dependents when he files his 2021 return?A. $6,103B. $6,000C. $9,000D. $9,600 Approximately 90-95% of all cases of diabetes are classified as type 2. Type 2 diabetes is believed to be due to lifestyle factors and what?. Rick buys a $4,500 stove with an installment plan that requires 12% down. How muchis the down payment?O $540O $375O $250O $125