The following statement is true about this circuit: option (A) The equivalent resistance of the circuit is the algebraic sum of all resistors.
This means that the total resistance of the circuit is equal to the sum of the individual resistances of each resistor. The total voltage on this combination is an algebraic sum of voltages on each resistor. This means that the total voltage of the circuit is equal to the sum of the voltages across each individual resistor.
The currents through all resistors are the same. This means that the total current that flows through the circuit is the same as the current that flows through each individual resistor.
To summarize, in a series circuit the equivalent resistance, total voltage, and current are equal to the algebraic sum of all the individual resistances, voltages, and currents respectively.
To know more about resistance refer here:
https://brainly.com/question/11431009#
#SPJ11
pry on the power steering reservoir to adjust the tension of the power steering belt. true or false?
The statement "pry on the power steering reservoir to adjust the tension of the power steering belt" is: false.
The tension of the power steering belt is adjusted by adjusting the position of the power steering pump. There is a tension adjustment bolt on the power steering pump that is used to adjust the tension of the power steering belt. The adjustment bolt should be turned clockwise or counterclockwise to adjust the tension of the belt.
A belt tension gauge may be used to ensure that the belt is properly tensioned. A pry bar should not be used on the power steering reservoir to adjust the tension of the power steering belt. This could cause damage to the reservoir or other components of the power steering system. The reservoir should be inspected for damage or leaks, but it should not be used to adjust the tension of the belt.
In summary, the tension of the power steering belt should be adjusted by adjusting the position of the power steering pump, not by prying on the power steering reservoir.
To know more about tension refer here:
https://brainly.com/question/29869473#
#SPJ11
Why is momentum not conserved in real life situations
Momentum is not always conserved in real-life situations because external forces can act on a system and change its momentum.
For example, when two cars collide, friction and air resistance can cause the momentum of the system to change. Similarly, when a ball is thrown in the air, gravity and air resistance act on it and cause its momentum to change. Other factors such as deformation, energy loss, and imperfect collisions can also cause momentum to be lost or gained. Therefore, while momentum is a useful concept in physics, it is important to consider the impact of external factors when analyzing real-world situations.
To know more about momentum, here
brainly.com/question/30677308
#SPJ4
water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. the density of water is 1 000 kg/m3. determine its average velocity. multiple choice question. 20 m/s 200 m/s 0.02 m/s 2 m/s 0.2 m/s
Option D: 2 m/s is the average velocity of the water flowing through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s.
According to the question:
cross-sectional area of the pipe = 0.002m²
Mass flowrate = 4 kg/s
Density of water = 1000 kg/m³
We are asked to find, average velocity =?
Average velocity is the net or total displacement covered by a body in a given time. The mass flow rate divided by the pipe's cross-sectional area and density ratio is the formula for calculating a fluid's average velocity.
As a result, the water's average flow rate through the pipe is provided by:
v = m / (ρ × A)
where, v is the average velocity, m is the mass flow rate, ρ is the density of water, and A is the cross-sectional area of the pipe. Substituting the values in the above equation we get:
v = 4 / (1000 × 0.002)
v = 2m/s
Therefore, the average velocity of water flowing through a pipe of cross-sectional area of 0.002m² is 2m/s.
To know more about average velocity, refer:
https://brainly.com/question/13243044
#SPJ4
Correct question is:
Water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. The density of water is 1 000 kg/m3. Determine its average velocity. Multiple choice question.
20 m/s
200 m/s
0.02 m/s
2 m/s
0.2 m/s
a tired worker pushes a heavy (100-kg) crate that is resting on a thick pile carpet. the coefficients of static and kinetic friction are 0.6 and 0.4, respectively. the worker pushes with a force of 600 n. the frictional force exerted by the surface is
When a tired worker pushes a heavy (100-kg) crate that is resting on a thick pile carpet, the frictional force exerted by the surface on the crate is 588 N.
When a tired worker pushes a heavy (100-kg) crate that is resting on a thick pile carpet, the frictional force exerted by the surface can be calculated as follows:
The weight of the crate = m × g = 100 kg × 9.8 m/s² = 980 N
Force applied by the worker = F = 600 N
The force of friction acting on the crate is given by the following formula:
Ff = μF
Where, μ is the coefficient of friction, F is the normal force acting on the crate.
Notes: The normal force is equal and opposite to the weight of the crate. i.e., N = 980 N1. The frictional force exerted by the surface on the crate is the static frictional force initially. Hence, we use the coefficient of static friction for our calculation.
2. If the force applied by the worker is not enough to overcome the static frictional force, then the crate will not move and the frictional force will remain static friction.
3. Once the crate starts moving, the static friction will convert to kinetic friction. Hence, we will use the coefficient of kinetic friction if the force applied by the worker is greater than the force of static friction. Initially, the force applied by the worker is less than the force of static friction, hence the frictional force exerted on the crate will be the static frictional force.
Frictional force = Ff = μN
The normal force acting on the crate = Weight of the crate = 980 N
Frictional force =
Ff = μN
= 0.6 × 980 N
= 588 N
Therefore, the frictional force exerted by the surface on the crate is 588 N.
For more such questions on frictional force , Visit:
https://brainly.com/question/4618599
#SPJ11
the intensity of the sound of a television commercial is 10 times greater than the intensity of the television program it follows. by how many decibels does the loudness increase?
The television commercial loudness increases by 10 decibels.
Increase in the Intensity of soundThe decibel (dB) scale is a logarithmic measure of sound intensity. The intensity of a sound is measured in watts per square meter and the decibel scale is a way to express the relative loudness of a sound, compared to a reference level.
A 10 dB increase in intensity is a 10-fold increase in sound power. This means that a sound with an intensity of 10 watts per square meter is 10 times louder than a sound with an intensity of 1 watt per square meter.
Learn more about Intensity of sound here:
https://brainly.com/question/17062836
#SPJ1
a system releases 690 kj of heat and does 110 kj of work on the surroundings. part a what is the change in internal energy of the system?
A system releases 690 kj of heat and does 110 kj of work on the surroundings then part a what i the change in internal energy of the system -800 kJ.
The change in internal energy of the system can be calculated using the formula
ΔU = Q - W,
where ΔU is the change in internal energy, Q is the heat exchanged, and W is the work done.
In this case, the system releases 690 kJ of heat (Q = -690 kJ) and does 110 kJ of work on the surroundings (W = 110 kJ).
So, ΔU = -690 kJ - 110 kJ = -800 kJ.
The change in internal energy of the system is -800 kJ.
Know more about internal energy here:
https://brainly.com/question/30207866
#SPJ11
a 10.0-mf capacitor is fully charged across a 12.0-v bat- tery. the capacitor is then disconnected from the battery and connected across an initially uncharged capacitor with capacitance c. the resulting voltage across each capacitor is 3.00 v. what is the value of c?
The value of uncharged capacitor in series with a 10.0-microfarad capacitor, given that each capacitor has a voltage of 3.00 volts, can be calculated using the formula for equivalent capacitance in series and formula for charge on a capacitor. The value of c is approximately 4.00 microfarads.
To determine the value of c, which is [tex]1/Ceq = 1/C1 + 1/C2[/tex] . Initially, the 10.0-microfarad capacitor has a charge of [tex]Q = CV = (10.0 * 10^{-6 }F) * 12.0 V = 1.20 * 10^{-4} C[/tex].
When it is connected in series with uncharged capacitor with capacitance c, charge is shared between the two capacitors. The charge on 10.0-microfarad capacitor is also equal to the charge on uncharged capacitor, which is given by [tex]Q = (3.00 V) * C[/tex] .
Equating the two expressions for Q and solving for c, we get [tex]C = Q/3.00[/tex] [tex]V = (1.20 * 10^{-4 C}) / (3.00 V) = 4.00 * 10^{-5 F}[/tex]. Therefore, value of c is approximately 4.00 microfarads.
To know more about equivalent capacitance, here
brainly.com/question/30905469
#SPJ4
a mass-spring oscillating system undergoes shm with a period t. what is the period of the system if the amplitude is doubled?
The period of a mass-spring oscillating system undergoing SHM with a period t, when the amplitude is doubled, is still t.
The period of a mass-spring oscillating system undergoing simple harmonic motion (SHM) is determined by the spring constant and mass of the system.
When the amplitude of the system is doubled, the period of the system remains the same, regardless of the amplitude. This means that the period of a mass-spring oscillating system undergoing SHM with a period t, when the amplitude is doubled, is still t.
To understand why the period remains the same, consider the equation for simple harmonic motion:
x(t) = A cos (2πft).
This equation describes the displacement of an object over time and is based on the principle that any system undergoing SHM oscillates about a fixed point at a constant frequency.
The frequency of the system is inversely proportional to the period, and is determined by the spring constant and mass of the system.
Increasing the amplitude of the system does not affect the frequency or period of the oscillations.
For similar question on oscillating system
https://brainly.com/question/14051226
#SPJ11
how to find the minimum thickness of a film such that reflected light undergo constructive interference
The minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.
The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),
where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.
For example, if the order of interference is 3, the wavelength of the light is 600 nm, and the index of refraction is 1.4,
the minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.
Constructive interference of reflected light occurs when the phase difference between the two waves is equal to an integral multiple of 2π.
This can be determined using the formula Δφ = (2π*m)/(λ*n), where Δφ is the phase difference, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.
To achieve constructive interference, the minimum thickness of the film can be determined by ensuring that the phase difference is equal to an integral multiple of 2π.
The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),
where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.
Constructive interference can be achieved by ensuring that the phase difference between the two waves is equal to an integral multiple of 2π.
to know more about light refer here:
https://brainly.com/question/15200315#
#SPJ11
two stationary point charges q1 and q2 are shown in the figure along with a sketch of some field linesrepresenting the electric field produced by them. what can you deduce from the sketch?
From the sketch, we can deduce that the two charges q1 and q2 are of opposite signs, as field lines start at the positive charge q1 and end at the negative charge q2. The field lines also indicate that the magnitude of the electric field produced by q1 is larger than that of q2.
Additionally, the field lines show that the electric field lines near the charges are denser, indicating a stronger electric field intensity near the charges. The direction of the electric field points from q1 to q2, which is consistent with the direction of the force that a positive test charge would experience if placed in the field. The field lines also show that the electric field is radial, i.e., the field lines point directly away from or towards each charge in a straight line, which is a characteristic of the electric field produced by a point charge. Finally, the density of the field lines decreases with distance from the charges, indicating that the electric field strength decreases with distance from the charges, following an inverse-square law.Learn more about electric field at: https://brainly.com/question/14372859
#SPJ11