I need help figuring out if what I got is rigjt

I Need Help Figuring Out If What I Got Is Rigjt

Answers

Answer 1

The figure in the picture shows 3 squares that form a right triangle. Each side of the triangle is determined by one side of the squares.

The only information we know is the area of two of the squares. The area of a square is calculated as the square of one of its sides

[tex]A=a^2[/tex]

So to determine the side lengths of the squares, we can calculate the square root of the given areas:

[tex]\begin{gathered} A=a^2 \\ a=\sqrt[]{A} \end{gathered}[/tex]

For one of the squares, the area is 64m², you can determine the side length as follows:

[tex]\begin{gathered} a=\sqrt[]{64} \\ a=8 \end{gathered}[/tex]

For the square with an area 225m², the side length can be calculated as follows:

[tex]\begin{gathered} a=\sqrt[]{225} \\ a=15 \end{gathered}[/tex]

Now, to determine the third side of the triangle, we have to apply the Pythagorean theorem. This theorem states that the square of the hypothenuse (c) of a right triangle is equal to the sum of the squares of its sides (a and b), it can be expressed as follows:

[tex]c^2=a^2+b^2[/tex]

If we know two sides of the triangle, we can determine the length of the third one. In this case, the missing side is the hypothenuse (c), to calculate it you have to add the squares of the sides and then apply the square root:

[tex]\begin{gathered} c^2=225+64 \\ c=\sqrt[]{225+64} \\ c=\sqrt[]{289} \\ c=17 \end{gathered}[/tex]

So the triangle's sides have the following lengths: 8, 15 and, 17

Now that we know the side lengths we can calculate the perimeter of the triangle. The perimeter of any shape is calculated by adding its sides:

[tex]\begin{gathered} P=8+15+17 \\ P=40m \end{gathered}[/tex]

Answer 2
yes you did get it right

Related Questions

The ratio of students polled in 6th grade who prefer lemonade to iced tea is 8:4, or 2:1. If there were 39 students in 6th grade polled, explain how to find the number of students that prefer lemonade and the number of students that prefer iced tea. Be sure to tell how many students prefer each.

Answers

Since we know the ratio is 2:1, then to find the number of students who like iced tea we convert the ratio to a fraction:

[tex]\frac{1}{2}[/tex]

this means that one of two students preferred iced tea.

To find the number of students who prefer iced tea we multiply the total number of students by the fraction, then:

[tex]39\cdot\frac{1}{2}=\frac{39}{2}=19.5[/tex]

Since we can't have a fraction of a student, we conclude that 19 students prefer iced tea and 20 prefer lemonade.

Geometry Problem - Given: segment AB is congruent to segment AD and segment FC is perpendicular to segment BD. Conclusion: Triangle AEG is isosceles. (Reference diagram in picture)

Answers

As the triangle AEF has 2 angles with the same measure, triangle AEF is isosceles.

Meghan measures the heights and arm spans of the girls on her basketball team. She plots the data and makes a scatterplot comparing heights and arm spans, in inches. Meghan finds that the trend line that best fits her results has the equation y=x+2 . if a girl on her team is 64 inches tall, What should Meggan expect her span to be?

Answers

EXPLANATION

Let's see the facts:

The equation is given by the following expression y= x + 2

---> 64 inches tall

As we can see in the graph of arm span versus height, and with the given data the arm span should be:

arm span = y = 64 + 2 = 66 inches

So, the answer is 66 inches. [OPTION C]

57-92=17 -2c-ust +1 8x1322-1) = 677343 (x + 55-22-20 K 54+32--1 5x+363) = -1 5x+aen -6 8+2=6 2:6-8 -44)-5)-(2) 16-3942=12 18-y-18 -x-57-3222 - (-1)-sy-5633=2 2-35-17 = 2 2.3.3 -Byzo yo TARE 3) -x - 5y + z = 17 -5x - 5y +56=5 2x + 5y - 3z=-10 4) 4x + 4y + 2x - 4y+ 5x - 4y

Answers

ANSWER:

[tex]\begin{gathered} x=4 \\ y=2 \\ z=0 \end{gathered}[/tex]

STEP-BY-STEP EXPLANATION:

We have the following system of equations:

[tex]\begin{gathered} 4x+4y+z=24\text{ (1)} \\ 2x-4y+z=0\text{ (2)} \\ 5x-4y-5z=12\text{ (3)} \end{gathered}[/tex]

We solve by elimination:

[tex]\begin{gathered} \text{ We add (1) and (2)} \\ 4x+4y+z+2x-4y+z=24+0 \\ 6x+2z=24\text{ }\rightarrow x=\frac{24-2z}{6}\text{ (4)} \\ \text{ We add (1) and (3)} \\ 4x+4y+z+5x-4y-5z=24+12 \\ 9x-4z=36\text{ (5)} \\ \text{ replacing (4) in (5)} \\ 9\cdot(\frac{24-2z}{6})-4z=36 \\ 36-3z-4z=36 \\ -7z=36-36 \\ z=\frac{0}{-7} \\ z=0 \end{gathered}[/tex]

Now, replacing z in (4):

[tex]\begin{gathered} x=\frac{24-2\cdot0}{6} \\ x=\frac{24}{6} \\ x=4 \end{gathered}[/tex]

Then, replacing z and x in (1):

[tex]\begin{gathered} 4\cdot4+4y+0=24 \\ 16+4y=24 \\ 4y=24-16 \\ y=\frac{8}{4} \\ y=2 \end{gathered}[/tex]

How do I do this ? I need to find the solution for it

Answers

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given equations

[tex]\begin{gathered} y=-\frac{4}{3}x \\ y=\frac{3}{2}x \end{gathered}[/tex]

STEP 2: Define the point that is the solution for the given functions on the graph

The solution of such a system is the ordered pair that is a solution to both equations. To solve a system of linear equations graphically we graph both equations in the same coordinate system. The solution to the system will be in the point where the two lines intersect.

STEP 3: Determine the solution for the system of equations

It can be seen from the image below that the two lines intersect at the origin and hence they are given as the solutions to the given system of equations.

Hence, the solutions are:

[tex]x=0,y=0[/tex]

Identify all points and line segments in the picture below.Points: A, B, C, DLine segments: AB, BC, CD, AD, BD, ACPoints: A, B, C, DLine segments: AD, AC, DC, BOPoints: A, B, C, DLine segments: AB, AD, AC, DC, BCPoints: A, BLine segments: AB, AC, DC, BC

Answers

Option C

Points: A, B, C, D

Line segments: AB, AD, AC, DC, BC

write the exponential function for the data displayed in the following table

Answers

As per given by the question,

There are given that a table of x and f(x).

Now,

The genral for of the equation is,

[tex]f(x)=ab^x[/tex]

Then,

For the value of x and f(x).

Substitute 0 for x and -2 for f(x).

So,

[tex]\begin{gathered} f(x)=ab^x \\ -2=ab^0 \\ -2=a \end{gathered}[/tex]

Now,

For the value of b,

Substitute 1 for x and -1/3 for f(x),

So,

[tex]\begin{gathered} f(x)=ab^x \\ -\frac{1}{3}=ab^1 \\ ab=-\frac{1}{3} \end{gathered}[/tex]

Now,

Put the value of a in above result.

So,

[tex]\begin{gathered} ab=-\frac{1}{3} \\ -2b=-\frac{1}{3} \\ b=\frac{1}{6} \end{gathered}[/tex]

Now,

Put the value of a and b in the general form of f(x).

[tex]\begin{gathered} f(x)=ab^x \\ f(x)=-2\cdot(\frac{1}{6})^x \end{gathered}[/tex]

Hence, the exponential function is ,

[tex]f(x)=-2(\frac{1}{6})^x[/tex]

An independent third party found the cost of a basic car repair service for a local magazine. The mean cost is $217.00 with a standard deviation of $11.40. Which of the following repair costs would be considered an “unusual” cost?

Answers

Given

An independent third party found the cost of a basic car repair service for a local magazine.

The mean cost is $217.00 with a standard deviation of $11.40.

To find: The repair costs which would be considered an “unusual” cost.

Explanation:

It is given that, the mean is 217.00, and the standard deviation is 11.40.

Consider, the distribution as a Normal distribution.

Then, the first range is defined as,

[tex]\begin{gathered} First\text{ }range:mean\pm SD \\ \Rightarrow X_1=mean+SD \\ =217.00+11.40 \\ =228.4 \\ \Rightarrow X_2=mean-SD \\ =217.00-11.40 \\ =205.6 \end{gathered}[/tex]

And, the second range is defined as,

[tex]\begin{gathered} Second\text{ }range:mean\pm2SD \\ \Rightarrow X_3=217.00+2(11.40) \\ =217.00+22.8 \\ =239.8 \\ \Rightarrow X_4=217.00-2(11.40) \\ =217.00-22.8 \\ =194.2 \end{gathered}[/tex]

Hence, the answer is option a) 192.53 since it does not belongs to the above ranges.

Suppose A is true, B is true, and C is true. Find the truth values of the indicated statement.

Answers

Solution:

If A is true, B is true, and C is true, then:

[tex]A\lor(B\wedge C)=\text{ T }\lor(T\wedge T)\text{ = T}\lor(T)\text{ = T }\lor\text{ T = T}[/tex]

we can conclude that the correct answer is:

TRUE

Uptown Tickets charges $7 per baseball game tickets plus a $3 process fee per order. Is the cost of an order proportional to the number of tickets ordered?

Answers

The cost of an order is proportional to the number of tickets if the relation between them is constant.

Then, if we order 1 ticket the cost will be $7 + $3 = $10

And if we order 2 tickets, the cost will be $7*2 + $3 = $17

So, the relation between cost and the number of tickets is:

For 1 ticket = $10 / 1 ticket = 10

For 2 tickets = $17/ 2 tickets = 8.5

Since 10 and 8.5 are different, the cost of an order is not proportional to the number of tickets ordered.

Answer: they are not proportional

Given the diagram below which could be used to calculate AC

Answers

Cos a = adjacent side / hypotenuse

Where:

a= angle = 37°

adjacent side = 20

Hypotenuse = x (the longest side , AC)

Replacing:

Cos (37)=20/ x (option B)

One evening 1400 concert tickets were sold for the Fairmont Summer Jazz Festival. Tickets cost $30 for covered pavilion seats and $20 for lawn seats. Total receipts were $32,000. Howmany tickets of each type were sold?How many pavilion seats were sold?

Answers

Let p be the number of pavilion seats and l be the number of lawn seats. Since there were sold 1400 tickets, we can write

[tex]p+l=1400[/tex]

and since the total money was $32000, we can write

[tex]30p+20l=32000[/tex]

Then,we have the following system of equations

[tex]\begin{gathered} p+l=1400 \\ 30p+20l=32000 \end{gathered}[/tex]

Solving by elimination method.

By multiplying the first equation by -30, we have an equivalent system of equation

[tex]\begin{gathered} -30p-30l=-42000 \\ 30p+20l=32000 \end{gathered}[/tex]

By adding these equations, we get

[tex]-10l=-10000[/tex]

then, l is given by

[tex]\begin{gathered} l=\frac{-10000}{-10} \\ l=1000 \end{gathered}[/tex]

Now, we can substitute this result into the equation p+l=1400 and obtain

[tex]p+1000=1400[/tex]

which gives

[tex]\begin{gathered} p=1400-1000 \\ p=400 \end{gathered}[/tex]

Then, How many tickets of each type were sold? 400 for pavilion seats and 1000 for lawn seats

How many pavilion seats were sold? 400 tickets

144 grapefruits in 4 boxes, How many grapefruits in 100 boxes?

Answers

Problem

144 grapefruits in 4 boxes, How many grapefruits in 100 boxes?​

Solution

for this case we can do the following proportional rule:

4/144 = x/100

And solving for x we got:

x= 100 (4/144)= 2.77

So between 2 and 3 grape fruits are expected

Need some help thanks

Answers

In the given equations, the value of variables are:

(A) a = -10(B) b = -0.2(C) c = 0.25

What exactly are equations?When two expressions are equal in a mathematical equation, the equals sign is used to show it.A mathematical statement is called an equation if it uses the word "equal to" in between two expressions with the same value.Using the example of 3x + 5, the result is 15.There are many different types of equations, such as cubic, quadratic, and linear.The three primary categories of linear equations are point-slope, standard, and slope-intercept equations.

So, solving for variables:

(A) 1/5a = -2:

1/5a = -2a = -2 × 5a = -10

(B) 8 + b = 7.8:

8 + b = 7.8b = 7.8 - 8b = -0.2

(C) -0.5 = -2c:

-0.5 = -2cc = -0.5/-2c = 0.25

Therefore, in the given equations, the value of variables are:

(A) a = -10(B) b = -0.2(C) c = 0.25

Know more about equations here:

brainly.com/question/2972832

#SPJ13

Amtrak's annual passenger revenue for the years 1985 - 1995 is modeled approximately by the formulaR = -60|x- 11| +962where R is the annual revenue in millions of dollars and x is the number of years after 1980. In what year was the passenger revenue $722 million?In the years ____ and ___, the passenger revenue was $722 million.

Answers

ANSWER

1987 and 1995

EXPLANATION

The revenue is modeled by:

[tex]R=-60|x-11|+962[/tex]

To find the years that the revenue was $722 million, we have to solve for x when R is 722.

That is:

[tex]\begin{gathered} 722=-60|x-11|+962 \\ \Rightarrow722-962=-60|x-11| \\ -240=-60|x-11| \\ \Rightarrow|x-11|=\frac{-240}{-60} \\ |x-11|=4 \end{gathered}[/tex]

We can split the absolute value equation into two different equations because the term in the absolute value is equal to both the positive and the negative of the term on the other side of the equality.

That is:

[tex]\begin{gathered} x-11=4 \\ x-11=-4 \end{gathered}[/tex]

Solve for x in both:

[tex]\begin{gathered} x=11+4 \\ \Rightarrow x=15 \\ x=11-4 \\ \Rightarrow x=7 \end{gathered}[/tex]

That is to say 7 and 15 years after 1980.

Therefore, in the years 1987 and 1995, the revenue was $722 million.

Put the following equation of a line into slope-intercept form, simplifying all fractions.
4x-3y=9

Answers

Answer:

y=4/3x+3

Step-by-step explanation:

we know that slope intercept form is y=mx+b, where m is the slope and b is the y intercept

for 4x-3y=9, we have to isolate y

we subtract 4x to both sides to get

-3y=-4x+9

to get y alone, we divide both sides by -3

y=4/3x+3

Answer:

Y=4/3x-3

Step-by-step explanation:

Y=4/3x-3

the other guy had the right idea but the two negatives make a positive!

Given: B is the midpoint of AC. Complete the statementIf AB = 28, Then BC =and AC =

Answers

If B is the midpoint of AC, this means that point B divides the line AC exactly into 2 equal parts AB and BC, therefore,

[tex]AB=BC[/tex]

Answer A

Thus, if AB = 28, BC = 28 too.

Answer B: Therefore, AC = 56

Graph the system below. What is the x-coordinate of the solution to the system of linear equations?y= -4/5x + 2y= 2/3x + 2A. -4B. 2C. 3D. 0

Answers

The solution is (x,y) = (0,2)

Hello! I need some help with this homework question, please? The question is posted in the image below. Q4

Answers

a) f(0) = -1

b) f(1) = 1

c) f(4) = 7

d) f(5) = 121

Explanation:

. Since for every value between -2 (excluded) and 4 (included)

~ 0 , 1 and 4

You have to use the first equation

=> f(0) = 2 * 0 - 1 = -1

=> f(1) = 2 * 1 - 1 = 1

=> f(4) = 2 * 4 - 1 = 7

. For values between 4 (exclude) and 5(included)

~ 5

You have to use the second equation

=> f(5) = 5^3 - 4 = 121

what is 0.09 as a percentage?

Answers

9% is the answer because 0.09 divided by 1 X 100 = 9%

Two liters of soda cost $2.50 how much soda do you get per dollar? round your answer to the nearest hundredth, if necessary.

Answers

If two litters of soda cost $2.50;

Then, a dollar would buy;

[tex]\begin{gathered} =\frac{2}{2.5}\text{litres of soda} \\ =0.80\text{ litres of soda} \end{gathered}[/tex]

Using data from the previous table, construct an exponential model for this situation.A ( t ) =What will be the value when t=8, rounded to 2 decimal places?

Answers

Answer

• Exponential model

[tex]A(t)=13.60(1+0.25)^{t}[/tex][tex]A(8)\approx81.06[/tex]

Explanation

The exponential model equation can be given by:

[tex]A(t)=C(1+r)^t[/tex]

where C is the initial value, r is the rate of growth and t is the time.

We can get the initial value by evaluating in the table when t = 0. In this case the value A(0) = 13.60. Then our equation is:

[tex]A(t)=13.60(1+r)^t[/tex]

Now we have to get r by choosing any point and solving for r. For example, (3, 26.56). By replacing the values and solving we get:

[tex]26.56=13.60(1+r)^3[/tex][tex]\frac{26.56}{13.60}=(1+r)^3[/tex][tex](1+r)^3=\frac{26.56}{13.60}[/tex][tex]\sqrt[3]{(1+r)^3}=\sqrt[3]{\frac{26.56}{13.60}}[/tex][tex]1+r=\sqrt[3]{\frac{26.56}{13.60}}[/tex][tex]r=\sqrt[3]{\frac{26.56}{13.60}}-1\approx0.2500[/tex]

Thus, our rate is 0.25, and we can add it to our equation:

[tex]A(t)=13.60(1+0.25)^t[/tex]

Finally, we evaluate t = 8:

[tex]A(8)=13.60(1+0.25)^8=81.06[/tex]

State which pairs of lines are:(a) Parallel to each other.(b) Perpendicular to each other.

Answers

So first of all we should write the three equations in slope-intercept form. This will make the problem easier to solve. Remember that the slope-interception form of an equation of a line looks like this:

[tex]y=mx+b[/tex]

Where m is known as the slope and b the y-intercept. The next step is to rewrite the second and third equation since the first equation is already in slope-intercept form. Its slope is 4 and its y-intercept is -1.

So let's rewrite equation (ii). We can begin with substracting 4 from both sides of the equation:

[tex]\begin{gathered} 8y+4=-2x \\ 8y+4-4=-2x-4 \\ 8y=-2x-4 \end{gathered}[/tex]

Then we can divide both sides by 8:

[tex]\begin{gathered} \frac{8y}{8}=\frac{-2x-4}{8} \\ y=-\frac{2}{8}x-\frac{4}{8} \\ y=-\frac{1}{4}x-\frac{1}{2} \end{gathered}[/tex]

So its slope is -1/4 and its y-intercept is -1/2.

For equation (iii) we can add 8x at both sides:

[tex]\begin{gathered} 2y-8x=-2 \\ 2y-8x+8x=-2+8x \\ 2y=8x-2 \end{gathered}[/tex]

Then we can divide both sides by 2:

[tex]\begin{gathered} \frac{2y}{2}=\frac{8x-2}{2} \\ y=\frac{8}{2}x-\frac{2}{2} \\ y=4x-1 \end{gathered}[/tex]

Then its slope is 4 and its y-intercept is -1. As you can see this equation is equal to equation (i).

In summary, the three equations in slope-intercept form are:

[tex]\begin{gathered} (i)\text{ }y=4x-1 \\ (ii)\text{ }y=-\frac{1}{4}x-\frac{1}{2} \\ (iii)\text{ }y=4x-1 \end{gathered}[/tex]

It's important to write them in this form because when trying to figure out if two lines are parallel or perpendicular we have to look at their slopes:

- Two lines are parallel to each other if they have the same slope (independently of their y-intercept).

- Two lines are perpendicular to each other when the slope of one of them is the inverse of the other multiplied by -1. What does this mean? If a line has a slope m then a perpendicular line will have a slope:

[tex]-\frac{1}{m}[/tex]

Now that we know how to find if two lines are parallel or perpendicular we can find the answers to question 4.

So for part (a) we must find the pairs of parallel lines. As I stated before we have to look for those lines with the same slope. As you can see, only lines (i) and (iii) have the same slope (4) so the answer to part (a) is: Lines (i) and (iii) are parallel to each other.

For part (b) we have to look for perpendicular lines. (i) and (iii) are parallel so they can't be perpendicular. Their slopes are equal to 4 so any line perpendicular to them must have a slope equal to:

[tex]-\frac{1}{m}=-\frac{1}{4}[/tex]

Which is the slope of line (ii). Then the answer to part (b) is that lines (i) and (ii) are perpendicular to each other as well as lines (ii) and (iii).

in this problem you will use a ruler to estimate the length of AC. afterwards you will be able to see the lengths of the other two sides and you will use the pythagorean theorem to check your answer

Answers

Answer:

5.124

Explanation:

Given the following sides

AB = 6.5cm

BC = 4.0cm

Required

AC

Using the pythagoras theorem;

AB^2 = AC^2 + BC^2

6.5^2 = AC^2 + 4^2

42.25 = AC^2 + 16

AC^2 = 42.25 - 16

AC^2 = 26.25

AC = \sqrt{26.25}

AC = 5.124

Hence the actual length of AC to 3dp is 5.124

Question 3 (5 points) Convert the decimal 0.929292... to a fraction. O 92 99 O 92 999 O 92 100 92 1000

Answers

[tex]\begin{gathered} x=\text{ Repeating decimal} \\ n=\text{ Number of repeating digits} \\ x=0.929292\text{ (1)} \\ \text{Multiply by 10}^n \\ 1000x=1000(0.929292) \\ 1000x=929.292 \\ \text{Subtract (1) from the last quation:} \\ 1000x-x=929.292-0.929292 \\ 999x=928.362708 \\ x=\frac{928.362708}{999}\approx\frac{92}{99} \\ \end{gathered}[/tex]

Quadrilateral HGEF is a scaled copy of quadrilateral DCAB. What is themeasurement of lin EG?

Answers

Answer:

14 units

Explanation:

If quadrilaterals HGEF and DCAB are similar, then the ratio of some corresponding sides is:

[tex]\frac{FH}{BD}=\frac{EG}{AC}[/tex]

Substitute the given side lengths:

[tex]\begin{gathered} \frac{6}{3}=\frac{EG}{7} \\ 2=\frac{EG}{7} \\ \implies EG=2\times7 \\ EG=14 \end{gathered}[/tex]

The measurement of line EG is 14 units.

Simplify the expression.

the expression negative one seventh j plus two fifths minus the expression three halves j plus seven fifteenths
negative 19 over 14 times j plus 13 over 15
negative 19 over 14 times j minus 13 over 15
negative 23 over 14 times j plus negative 1 over 15
23 over 14 times j plus 1 over 15

Answers

The expression is simplified to negative 23 over 14 times j plus negative 1 over 15. Option C

What is an algebraic expression?

An algebraic expression can be defined as an expression mostly consisting of variables, coefficients, terms, constants and factors.

Such expressions are also known to be composed or made up of some mathematical or arithmetic operations, which includes;

AdditionSubtractionDivisionBracketMultiplicationParentheses. etc

From the information given, we have that;

negative one seventh j = - 1/7jtwo fifths = 2/5three halves j = 3/2 jseven fifteenths = 7/15

Substitute the values

- 1/7j + 2/5 - 3/2j - 7/15

collect like terms

- 1/7j - 3/2j + 2/5 - 7/15

-2j - 21j /14 + 6  7 /15

-23j/14 + -1/15

Hence, the correct option is negative 23 over 14 times j plus negative 1 over 15

Learn more about algebraic expressions here:

https://brainly.com/question/4344214

#SPJ1

Use a system of equations to solve the following problem.The sum of three integers is380. The sum of the first and second integers exceeds the third by74. The third integer is62 less than the first. Find the three integers.

Answers

the three integers are 215, 12 and 153

Explanation:

Let the three integers = x, y, and z

x + y + z = 380 ....equation 1

The sum of the first and second integers exceeds the third by 74:

x + y - 74 = z

x + y - z = 74 ....equation 2

The third integer is 62 less than the first:

x - 62 = z ...equation 3

subtract equation 2 from 1:

x -x + y - y + z - (-z) = 380 - 74

0 + 0 + z+ z = 306

2z = 306

z = 306/2

z = 153

Insert the value of z in equation 3:

x - 62 = 153

x = 153 + 62

x = 215

Insert the value of x and z in equation 1:

215 + y + 153 = 380

368 + y = 380

y = 380 - 368

y = 12

Hence, the three integers are 215, 12 and 153

Use the graph to evaluate the function for the given input value. 20 f(-1) = 10 f(1) = х 2 -10 -20 Activity

Answers

we have that

[tex]f(-1)=-8,f(1)=-12[/tex]

11. Suppose that y varies inversely with x. Write a function that models the inverse function.x = 1 when y = 12- 12xOy-y = 12x

Answers

We need to remember that when two variables are in an inverse relationship, we have that, for example:

[tex]y=\frac{1}{x}[/tex]

In this case, we have an inverse relationship, and we have that when x = 1, y = 12.

Therefore, we have that the correct relationship is:

[tex]y=\frac{12}{x}[/tex]

In this relationship, if we have that x = 1, then, we have that y = 12:

[tex]x=1\Rightarrow y=\frac{12}{1}\Rightarrow y=12[/tex]

Therefore, the correct option is the second option: y = 12/x.

Other Questions
Jane is conducting an experiment on whether different colored light bulbs have an effect on the number of flower buds on a plant. explain how her experiment should be counducted. This object was discovered in an AncientEgyptian tomb. Although you may not haveseen it before, you can use the visualinformation to answer Questions 4 and 5below: 4 - Based on your learning from Modules 1, 2,and 3, what is this figure's social status inAncient Egyptian society? Use specific detailsto support your answer. 2-3 sentences is anappropriate length for your response.5 - Why would this object have been placed inan Egyptian tomb? 2-3 sentences is anappropriate length for your response. what is 5/8 out of 100 pls help once i finish this i can sleep!!!!Identify the brain stem in the diagram below. C A D B Is the function y= 10x1010 linear or nonlinear? Solve the system of equations. If the system has no solution say that it's inconsistent. [tex]\begin{gathered}x + 5y = 2 \\ 3x + 15y = 6\end{gathered}[/tex] Which are correct representations of the inequality 3(2x 5) < 5(2 x)? Select two options. x < 5 6x 5 < 10 x 6x + 15 < 10 5x A number line from negative 3 to 3 in increments of 1. An open circle is at 5 and a bold line starts at 5 and is pointing to the right. A number line from negative 3 to 3 in increments of 1. An open circle is at negative 5 and a bold line starts at negative 5 and is pointing to the left. Determine the a coordinates of the critical points/numbers for the function f(x)= x/x^2+5 x=0, x= -5, and x = 5 x=0 No critical points x = 5x= -5 and x = 5 Can someone pls help me . Thank you so much .FIRST PROBLEM please help figure out this problem im trying to determine if the lines that appear to be tangent are tangent the parent rock that was altered by metamorphism is called the protolith. what is the protolith of slate? group of answer choices coal any igneous rock gneiss sandstone n three to four sentences, explain how this passage uses humor to critique Victorian views about the importance of family. Freiese Um Which of the following is the graph of F(x) = 3x2 ? Why would internal improvements like roads and canals help with the issue of sectionalism? Round to the nearest thousand to estimate the difference between 7,333 and 4,983 A chemist prepares a solution of magnesium fluoride (MgF2) by measuring out 6.73mg of magnesium fluoride into a 250.mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's magnesium fluoride solution. Round your answer to 3 significant digits. Jeremy Sold x tickets for a fundraiser. Kelly sold twice as many tickets as Jeremy Altogether. Jeremy and Kelly sold 192 tickets which equation could be used to determine how many tickets Jeremy sold? The sugar sweet company needs to transport sugar to market. The graph below shows the transporting cost (in dollars) versus the weight of sugar being transported (in tons) a.)What is the cost of transporting 0 tonsb.) What is the cost of transporting 1 tons c.) Hos much does the cost increase for each ton of sugar being transported d.) Are the amounts given in parts b. and c. equal? What term is used to describe the practice of unloading materials from an incoming trucks or rail cars and loading these materials onto outbound trucks or rail cars, with little or no storage or warehousing in between?. 2. A topographic map shows two locations,X and Y, one half mile apart. From thecontour lines, the elevation of X is 800 feetand Y is 750 feet. What is the gradientbetween the two locations?(1) 12.5 ft/mi (3) 50 ft/mi(2) 25 ft/mi(4) 100 ft/mi 2