If b is a positive real number and m and n are positive integers, then.A.TrueB.False

If B Is A Positive Real Number And M And N Are Positive Integers, Then.A.TrueB.False

Answers

Answer 1

we have that

[tex](\sqrt[n]{b})^m=(b^{\frac{1}{n}})^m=b^{\frac{m}{n}}[/tex]

therefore

If b is a positive real number

then

The answer is true

Related Questions

Find the midpoint M of the line segment joining the points R = (-5. -9) and S = (1. -1).

Answers

Answer:

(-2,-5)

Step-by-step explanation:

(-5+1÷2, -9+(-1)÷2)

=(-4÷2, -10÷2)

=(-2,-5)

Find the limit. (If an answer does not exist, enter DNE.)

Answers

Given:

[tex]\lim _{\Delta x\to0}\frac{6(x+\Delta x)-6x_{}}{\Delta x}[/tex]

Solve as:

[tex]\begin{gathered} \lim _{\Delta x\to0}\frac{6x+6\Delta x-6x}{\Delta x}=\lim _{\Delta x\to0}\frac{6\Delta x}{\Delta x} \\ =6 \end{gathered}[/tex]

Hence, the required answer is 6.

Ary is writing thank you cards to everyone who came to her wedding. It takes her of an hour to write one thank you card. If it took her 8 hours to finish writing all of the cards, how many thank you cards did she write?

Answers

From the question, It takes Ary an hour to write one thank you card.

So, the rate at which she writes the thank you card is;

[tex]\text{Rate R}=1\text{ card/hour}[/tex]

To determine the number N of thank you card she would write in 8 hours.

[tex]N=R\times T[/tex]

Where;

R is the rate = 1 card/hour

T is the time taken = 8 hours

Substituting the values we have;

[tex]\begin{gathered} N=1\text{ card/hour}\times8\text{ hours} \\ N=8\text{ cards} \end{gathered}[/tex]

The number of thank you cards she write is 8 cards

(C3) In how many distinct ways can theletters of the word LILLYPILLY bearranged?A. 3.628.800B. 480C. 7.560D. 120.960.

Answers

We have:

L = 5 L's

I = 2 I's

P = 1 P

Y = 2 Y's

so:

[tex]\frac{10!}{5!2!2!}=7560[/tex]

Can anybody help me out with this? I would really appreciate it! I don't need a huge explanation just the answer and a BRIEF explanation on how you got it.

Answers

The range of the following function is

[tex]\mleft\lbrace y>1\mright\rbrace[/tex]

We can also call the range of a function an image, the range or image of a function is a set, we can see this set looking at the graph and see which values of y the function have, remember that we can have the same y value for different x value, looking at our graph we can see that this function comes from high y values, have a vertex on (3,1), in other words, it stops at y = 1 and then start growing again, and go on repeated values of y, then we can say that the image (values of y that the function assumes) is all values bigger than 1, therefore {y > 1}.

What are the unknown angles?

Answers

Answer:
A= 53°
B= 53°
C=127°

Explanation:

To find angle a, it is the same as the 53° angle given because they are corresponding angles. (Same place but on different lines)

To find angle b, we know that it is across from angle a. These types of angles are called alternate interior angles and they are always equal just like corresponding angles. So, therefore, angle b must equal angle a which is 53°.

To find angle c we know that a straight line equals 180°. Subtract the known 53 from 180 to figure out the degree of angle c.
180-53=127
Angle c=127°

You can always check your answer by making sure the line adds up to 180°
a is 53
b is 53
c is 127

What is the value of y in the solution set of the system of linear equations shown below?y = -x + 124x - 2y = 36A.10B. 8C. 6D. 2

Answers

y = 2 (option D)

Explanation:

y = -x + 12

4x - 2y = 36

rewriting the equations:

y + x = 12 ....equation 1

-2y + 4x = 36 ....equation 2

Using elimination method:

we will be eliminating y. So we need to make the coefficient of y to be the same in both equation. We will be multiplying the first equation by 2.

2y + 2x = 24 ....equation 1

-2y + 4x = 36 ....equation 2

Add both equations:

2y + (-2y) + 2x + 4x = 24 + 36

2y-2y + 6x = 60

6x = 60

x = 60/6 = 10

Insert the value of x in any of the equation. Using equation 2:

4(10) - 2y = 36

40 -2y = 36

-2y = 36 - 40

-2y = -4

y = -4/-2

y = 2 (option D)

May I please get help finding the length to this. I tried many times.m but I couldn’t find answer for it

Answers

Both triangles are similar, so:

[tex]\frac{x}{3}=\frac{6}{4.5}[/tex]

Solving for x:

4.5x = 3(6)

4.5x = 18

x = 4

If the price of bananas goes from $0.39 per pound to $1.06 per pound, what is the likely effect of quantity demanded?

Answers

When the price of bananas goes from $0.39 per pound to $1.06 per pound, the likely effect of quantity demanded is that it will reduce.

What is demand?

The quantity of a commodity or service that consumers are willing and able to acquire at a particular price within a specific time period is referred to as demand. The quantity required is the amount of an item or service that customers will purchase at a certain price and period.

Quantity desired in economics refers to the total amount of an item or service that consumers demand over a given time period. It is decided by the market price of an item or service, regardless of whether or not the market is in equilibrium.

A price increase nearly invariably leads to an increase in the quantity supplied of that commodity or service, whereas a price decrease leads to a decrease in the quantity supplied. When the price of good rises, so does the quantity requested for that good. When the price of a thing declines, the demand for that good rises.

Learn more about demand on:

https://brainly.com/question/1245771

#SPJ1

helpppppppppppppppppppppppppppppp

Answers

De el puo Le je qua 510

skill issue hahahahahhaahahhahaha

5. Monty compared the minimum of the function f(x) = 2x2 - x + 6 to theminimum of the quadratic function that fits the values in the table below.X-3-2-101g(x)0-5-6-34What is the horizontal distance between the minimums of the twofunctions?A 0.25B. 1C. 1.5D. 12

Answers

The function f is given by:

[tex]\begin{gathered} f(x)=2x^2-x+6 \\ \text{ Rewrite the quadratic function in vertex form} \\ f(x)=2(x^2-\frac{1}{2}x)+6 \\ =2((x-\frac{1}{4})^2-(-\frac{1}{4})^2)+6 \\ =2(x-\frac{1}{4})^2-2(\frac{1}{16})+6 \\ =2(x-\frac{1}{4})^2+\frac{47}{8} \end{gathered}[/tex]

If a quadratic function is written in the form:

[tex]\begin{gathered} a(x-h)^2+k \\ where: \\ a>0 \end{gathered}[/tex]

Then the function has a minimum point at (h,k)

And the minimum is k

In this case,

[tex]\begin{gathered} a=2\gt0 \\ h=\frac{1}{4}=0.25 \\ k=\frac{47}{8}=5.875 \end{gathered}[/tex]

Therefore, the minimum of the function f is at (0.25, 5.875)

The minimum of the function given by the table is at (-1, -6).

Therefore, the required horizontal distance is given by:

[tex]0.25-(-1)=1.25[/tex]

Therefore, the horizontal distance is 1.25

what is the slope of a line perpendicular to this linewhat is the slope of a line parallel to this line

Answers

Answer:

• Slope perpendicular to the line: 8/5

,

• Slope parallel to the line: –5/8

Explanation

Given

[tex]5x+8y=7[/tex]

To know the result, it is better if we work with the slope-intercept form:

[tex]y=mx+b[/tex]

Then, to get this kind of form we have to isolate y from the given equation:

[tex]8y=7-5x[/tex][tex]y=\frac{7-5x}{8}[/tex][tex]y=-\frac{5}{8}x+\frac{7}{8}[/tex]

Thus, in this case, m = –5/8 and b = 7/8.

Perpendicular lines have negative reciprocal lines:

[tex]m_2=-\frac{1}{m_1}[/tex]

where m₁ is the slope of line 1 and m₂ is the line perpendicular to line 1.

Then, replacing the values:

[tex]m_2=-\frac{1}{-\frac{5}{8}}[/tex][tex]m_2=\frac{8}{5}[/tex]

Finally, the slopes of parallel lines are the same, meaning:

[tex]m_2=m_1[/tex]

where m₁ is the slope of line 1 and m₂ is the line parallel to line 1.

10. Calculate the circumference of cylinder that is 34cm tall and has a volume of560cm#9

Answers

The Solution.

By formula, the volume of the planet (sphere) is given as below:

[tex]V=\frac{4}{3}\pi r^3[/tex]

In this case,

[tex]\begin{gathered} V=5.10^{18}km^3 \\ r=\text{?} \end{gathered}[/tex]

Substitting these given values into the formula above, we can solve for r, the radius of the planet.

[tex]\frac{4}{3}\pi r^3=5(10^{18})[/tex]

Dividing both sides by

[tex]\frac{4}{3}\pi[/tex]

We get

[tex]r^3=\frac{5\times10^{18}}{\frac{4}{3}\pi}=\frac{5\times10^{18}}{4.188790205}[/tex]

Taking the cube root of both sides, we have

[tex]\begin{gathered} r=\sqrt[3]{(}\frac{5\times10^{18}}{4.188790205})=(1.060784418\times10^6)km^{} \\ Or \\ r=1060784.418\text{ km} \end{gathered}[/tex]

Thus, the correct answer is 1060784.418km.

You are taking 2 shirts(white and red) and 3 pairs of pants (black, blue, and gray) on a trip. How many different choices of outfits do you have?

Answers

6 because 2 times 3 = 6

13(10+2) could be used to simplify which of the following problems?A 013/20)B O13(12)C 0130(26)

Answers

Explanation:

The expression is given below as

9. Solve the system of equations algebraically. Show your reasoning.2y = x -44x + 3y = 5

Answers

I) 2y = x - 4

II) 4x + 3y = 5

First, we put all the variables on the same side subtracting x from both sides of equation I:

I) 2y - x = -4

II) 3y + 4x = 5

Now, we multiply equation I by 4:

I) 8y - 4x = -16

II) 3y + 4x = 5

Then, we add equation I to equation II:

I) 8y - 4x = -16

II) 11y = -11

Therefore, we got from equation II:

y = -11/11 = -1

Applying this result on equation I, we got:

-8 - 4x = -16

4x = 8

x = 8/4 = 2

Final answer: (x,y) = (2,-1)

A system of equations is shown below:Equation A: 3c = d − 8Equation B: c = 4d + 8Which of the following steps should be performed to eliminate variable d first?Multiply equation A by −4.Multiply equation B by 3.Multiply equation A by 3.Multiply equation B by 4.

Answers

We have the following: system of equations:

A: 3c=d-8

B: c=4d+8

To eliminate variable d first, if we want to use elimination method, we need to have variable d in both equations with the same coefficient but with different signs.

As in equation B, the coefficient of d is 4, then we need to have in equation A a coefficient of -4 for variable d.

Then the answer is we need to multiply equation A by -4.

the line that passes through point (-1,4) and point (6,y) has a slope of 5/7. find y.

Answers

Question: the line that passes through the point (-1,4) and point (6,y) has a slope of 5/7. find y.

Solution:

By definition, the slope of a line is given by the formula:

[tex]m\text{ = }\frac{Y2-Y1}{X2-X1}[/tex]

where m is the slope of the line and (X1,Y1), (X2,Y2) are any two points on the line. In this case, we have that:

(X1,Y1) = (-1,4)

(X2,Y2) = (6,y)

m = 5/7

thus, replacing the above data into the slope equation, we get:

[tex]\frac{5}{7}\text{= }\frac{y-4}{6+1}\text{ }[/tex]

this is equivalent to:

[tex]\frac{5}{7}\text{= }\frac{y-4}{7}\text{ }[/tex]

By cross-multiplication, this is equivalent to:

[tex]\text{5 = y-4}[/tex]

solving for y, we get:

[tex]y\text{ = 5+ 4 = 9}[/tex]

then, we can conclude that the correct answer is:

[tex]y\text{ =9}[/tex]

f (x) = 4x^2+2x+6find the value of the discriminate of f and how many distinct real number zeros f has.

Answers

The Solution:

Given:

Required:

To find the discriminant of f.

By formula, the discriminant (D) is:

[tex]D=b^2-4ac[/tex]

Where:

[tex]\begin{gathered} a=4 \\ b=2 \\ c=6 \end{gathered}[/tex]

Substitute:

[tex]\begin{gathered} D=2^2-4(4)(6)=4-96=-92 \\ No\text{ real root since D}<0 \end{gathered}[/tex]

Therefore, the correct answers are:

Discriminant = -92

No distinct real root.

Given the functions f(x) = x ^ 2 + 3x - 1 and g(x) = - 2x + 3 determine the value of (f + g)(- 2)

Answers

Start by finding (f+g)(x)

[tex](f+g)(x)=(x^2+3x-1)+(-2x+3)[/tex]

simplify the equation

[tex]\begin{gathered} (f+g)(x)=x^2+(3x-2x)-1+3 \\ (f+g)(x)=x^2+x+2 \end{gathered}[/tex]

then, replace x by -2

[tex]\begin{gathered} (f+g)(-2)=(-2)^2+(-2)+2 \\ (f+g)(-2)=4-2+2 \\ (f+g)(-2)=4 \end{gathered}[/tex]

Find the volume of the solid. Round your answer to the nearest hundredth. I keep getting the wrong answer. Need help!

Answers

Volume is area * height

area of pentagon is 1/4 * root(5(5 + 2root(5))) a^2

a being length of 1 side

if a =2, area is 6.88

6.88 * 4 = 27.52 yards^3

A bug is moving along a straight path with velocity v(t)= t^2-6t+8 for t ≥0. Find the total distance traveled by the bug over interval [0,6].

Answers

Answer

Explanation

Given:

A bug is moving along a straight path with velocity

[tex]V(t)=t^2-6t+8\text{ }for\text{ }t>0[/tex]

What to find:

The total distance traveled by the bug over interval [0, 6].

Solution:

To find the total distance traveled by the bug over interval [0, 6], you first integrate v(t)= t² - 6t + 8

[tex]\begin{gathered} \int_0^6t^2-6t+8 \\ \\ [\frac{t^3}{3}-\frac{6t^2}{2}+8t]^6_0 \\ \\ (\frac{t^3}{3}-3t^2+8t)^6-(\frac{t^{3}}{3}-3t^2+8t)^0 \\ \\ (\frac{6^3}{3}-3(6)^2+8(6))-(\frac{0^3}{3}-3(0)^2+8(0)) \\ \\ (\frac{216}{3}-3(36)+48)-(0-0+0) \\ \\ 72-108+48-0 \\ \\ =12\text{ }units \end{gathered}[/tex]

What is the average rate of change of the function f(x) = 2x^2 + 4 over the interval (-4,-1] ?

Answers

The average rate of change is:

[tex]\frac{f(-1)-f(-4)}{-1+4}=\frac{f(-1)-f(-4)}{3}[/tex][tex]f(-1)=2(-1^2)+4=6[/tex][tex]f(-4)=2(-4^2)+4=2(16)+4=36[/tex]

then computing the first formula, the average rate of change of f(x) is

[tex]\frac{6-36}{3}=-10[/tex]

Which equation could be represented by the number line? A. 3 OB.-4 5=1 OC. 1+ -5)= OD. -3+4 -1

Answers

According to the given number line, we have to go back from the second point to the first point 4 spots. In other words, the equation has to include a sum with -4.

Therefore, the answer is A since it's expressing an initial number 3, then the sum with -4.

A recycle bucket weighs 3.5 lb at the beginning of the school year in August. At the beginning of December it weighed 21.5 lb. Determine the weight gain per month.

Answers

Answer:

4.5 pounds

Step-by-step explanation:

21.5 - 3.5 = 18

We divide that by 4 (Aug., Sept, Oct. Nov.)

18/4 = 4.5

Answer:

6.144

Step-by-step explanation:

ranslateSave & Exit CertifyLesson: 10.2 Parabolas11/15Question 9 of 9, Step 1 of 1CorrectFind the equationof the parabola with the following properties. Express your answer in standard form.

Answers

Given

[tex]undefined[/tex]

Solution

Standard from of a parabola

[tex](x-H-h)^2=4p(y-k)[/tex]

csc 0 (sin2 0 + cos2 0 tan 0)=sin 0 + cos 0= 1

Answers

Okay, here we have this:

Considering the provided expression, we are going to prove the identity, so we obtain the following:

[tex]\frac{csc\theta(sin^2\theta+cos^2\theta tan\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{\frac{1}{sin\vartheta}(sin^2\theta+cos^2\theta\frac{sin\theta}{cos\theta})}{sin\theta+cos\theta}=1[/tex][tex]\frac{\frac{1}{sin\vartheta}(sin^2\theta+cos\text{ }\theta sin\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{(\frac{sin^2\theta}{sin\theta}+\frac{cos\text{ }\theta sin\theta}{sin\theta})}{sin\theta+cos\theta}=1[/tex][tex]\frac{(sin\text{ }\theta+cos\text{ }\theta)}{sin\theta+cos\theta}=1[/tex][tex]\frac{1}{1}=1[/tex][tex]1=1[/tex]

2x^2 +6x=-3 can you compute this?

Answers

The general formula for a quadratic equation is ax² + bx + c = 0.

To solve

[tex]2x^2+6x=-3[/tex]

You can follow the steps.

Step 01: Write the equation in the general formula.

To do it, add 3 to each side of the equation.

[tex]\begin{gathered} 2x^2+6x+3=-3+3 \\ 2x^2+6x+3=0 \end{gathered}[/tex]

Step 02: Use the Bhaskara formula to find the roots.

The Bhaskara formula is:

[tex]x=\frac{-b\pm\sqrt[]{\Delta}}{2\cdot a},\Delta=b^2-4\cdot a\cdot c[/tex]

In this question,

a = 2

b = 6

c = 2

So, substituting the values:

[tex]\begin{gathered} \Delta=b^2-4\cdot a\cdot c \\ \Delta=6^2-4\cdot2\cdot3 \\ \Delta=36-24 \\ \Delta=12 \\ \\ x=\frac{-6\pm\sqrt[]{12}}{2\cdot2} \\ x=\frac{-6\pm\sqrt[]{2\cdot2\cdot3}}{4} \\ x=\frac{-6\pm2\cdot\sqrt[]{3}}{4} \\ x_1=\frac{-6+2\sqrt[]{3}}{4}=\frac{-3+\sqrt[]{3}}{2} \\ x_2=\frac{-6-2\sqrt[]{3}}{4}=\frac{-3-\sqrt[]{3}}{2} \end{gathered}[/tex]

Answer:

Exact form:

[tex]x=\frac{-3-\sqrt[]{3}}{2},\frac{-3+\sqrt[]{3}}{2}[/tex]

Decimal form:

[tex]x=-2.37,\text{ -0.63}[/tex]

Find the slope and y intercept of the line 5x - 3y =12

Answers

Answer:

slope = 5/3

y-intercept = -4

Step-by-step explanation:

First, move the x to the other side of the equation:
-3y=-5x+12
Then, divide BOTH sides by -3, so that there is no coefficient next to y:
y=5/3x-4

Then, just look at the constant and coefficient next to x (m). The slope is 5/3 and the y-intercept is -4.

Hope this helps!

Answer:

[tex]y = \frac{5}{3}x - 4[/tex]

Step-by-step explanation:

move the 5x to a -5x

-3y= -5x+12

-3/-3= -5x÷ -3 12÷ -3

Suppose that $6000 is placed in an account that pays 19% interest compounded each year. Assume that no withdrawals are made from the account.

Answers

We are going to use the formula for the compound interest, which is

[tex]A=P\cdot(1+\frac{r}{n})^{nt}[/tex]

A = the future value of the investment

P = the principal investment amount (the initial deposit or loan amount)

r = the annual interest rate (decimal)

n = the number of times that interest is compounded per unit t

t = the time the money is invested or borrowed for

Replacing the values in the first question we have:

[tex]\begin{gathered} A=P\cdot(1+\frac{r}{n})^{nt} \\ A=6000,r=0.19,n=1,t=1 \\ A=6000\cdot(1+\frac{0.19}{1})^1=7140 \end{gathered}[/tex]

Answer for the first question is : $7140

Then, replacing the values in the second question we have:

[tex]\begin{gathered} A=P\cdot(1+\frac{r}{n})^{nt} \\ A=6000,r=0.19,n=1,t=2 \\ A=6000\cdot(1+\frac{0.19}{1})^2=8497 \end{gathered}[/tex]

Answer for the second question is : $8497

Other Questions
Use complete sentences to explain the process you would use to find the volume of the shipping box.(Trying to help my son with this) A company has 10 software engineers and 6 civil engineers. In how many ways can they be seated around a round table so that no two of the civil engineers will sit together? [ 9! 10!/4!)] employees at a toy-manufacturing factory are let go because robots have been installed to replace humans. what type of unemployment faces the laid-off workers? group of answer choices seasonal cyclical structural frictional market value ratios lab r doors' year-end price on its common stock is $55. the firm has a profit margin of 11.5%, total assets of $30 million, a total asset turnover ratio of 2.00, no preferred stock, and there are 4.0 million shares of common stock outstanding. what is the pe ratio for lab r doors? (do not round intermediate steps.) multiple choice 31.884 0.273 14.493 0.546 Samantha started with $25 in her account. she saves $7 per week. Australia has no money in his account, but adds $15 per week. for how many weeks will Australia have more money in his account than Samantha Why did President Andrew Jackson denounce the nullification movement? Can u please help me with this answer HELP MEE((((((((solve an equation and draw a graph on itI give 20 points!! please help as soon as possible( Purple hibiscusChapter 9Why does Mama call Jaja and Kambili on this day rather than Papa? Why does Papa ask to speak to Ifeoma as well as his children that day? Which of the following could be the product of two consecutive prime numbers? I'm stuck with this word problem pls helped me technician a says that the higher the gear selected the more torque is available. technician b says that a transaxle contains gears that increase or decrease torque. who is correct? Write a rule for the nth term of the geometric sequence given a_2 = 64, r = 1/4 Consider the following graph. Determine the domain and range of the graph? Is the domain and range all real numbers? Which of the following are ways that an author can imply meaning in a text? Select two answers. A. through indirect comments from the narratorB. through an explanation given in direct addressC. by having a character point out the meaningD. by connecting the meaning with a symbol or image One group (A) contains 75 people. Two fifths of the people in group A will be selected to win $20 fuel cards. There is another group (B) in a nearby town that will receive the same number of fuel cards, but there are 154 people in that group. What will be the ratio of no winners in group A to nonwinners in group B after the selections are made? Express your ratio as a fraction or with a colon. according to the national retail federation, 34% of taxpayers used computer software to do their taxes. a sample of 125 taxpayers was selected. 4. what is the distribution of the sample proportion of the 125 taxpayers that used the computer software to do their taxes? a. n(0.34, 0.0424) b. n(0.34, 82.5) 5. what is the probability that between 28% and 40% of the taxpayers from the sample of 125 used computer software to do their taxes? a. pnorm(0.4,0.34,0.0424)-pnorm(0.28,0.34,0.0424) b. pnorm(0.4,0.34,125)- pnorm(0.28,0.34,125) x a is the factor of a polynomial P(x) if P(a) is equal to Mind doing this too? Predict the shape and bond angles of the following molecules:H2S CF4 HCN NF3 BCl3 NH2Cl OF2