The equation that he can use to find y, the total cars in his collection after x months is y = 15 + 4x.
What is an equation?A mathematical equation is the statement that illustrates that the variables given. In this case, two or more components are taken into consideration to describe the scenario.
Let the number of months be x.
Let the number of cars be y.
The equation will be:
y = 15 + (4 × x)
y = 15 + 4x
This illustrates the equation.
Learn more about equations on:
brainly.com/question/2972832
#SPJ1
个HS: Math II North Carolina High School Math II [M] (Prescripti8. Which statement is true?O OIf two figures are congruent, then they have the same shape but nOIf two figures are congruent, then they are similar.OIf two figures are similar, then they are congruent.OIf two figures are similar, then corresponding sides must be congru
For two triangles to be similar, it is enough if two angles of one triangle are equal to two angles of the other triangle.
If two figures are congruent, the corresponding sides must be equal and also the corresponding sides.
Therefore, the answer is:
If two figures are congruent, then they are similar
A rectangular garden has a walkway around it. The area of the garden is 2(4.5x +1.5). Thecombined area of the garden and the walkway is 3.5(8x + 4). Find the area of the walkway aroundthe garden as the sum of two terms.The area of the walkway around the garden is(Simplify your answer. Use integers or decimals for any numbers in the expression.)
In this case, we'll have to carry out several steps to find the solution.
Step 01:
DataL
garden area = 2(4.5x +1.5)
garden + walkway area = 3.5(8x + 4)
walkway area = ?
Step 02:
walkway area:
walkway area = 3.5(8x + 4) - 2(4.5x +1.5)
= 28x + 14 - 9x - 3
= 19x + 11
The answer is:
The area of the walkway around the garden is 19x + 11
(1.2 x 10^7)(2.2 x 10^-3)
The value of the expression is:
2.64 x 10² or 26400
Step - by - Step Explanation
From the question;
(1.2 x 10⁷ )(2.2 x 10⁻³)
To sim plify the expression above, we will multiply the decimal part and then apply indices to the exponent.
That is;
[tex]1.2\times2.2\times10^{7-3}[/tex][tex]=2.64\times10^2[/tex]Or
=26400
21/x=48/96. 70/b=20/80. 50/20=x/72
In summary, the respective values of the unknown variables in the equations are 42, 280, and 1800.
The r value of -0.89 suggests that the independent variable ________, the dependent _________
We have that a correlation coefficient shows us how related is the dependent variable to the behavior of the independent variable.
MagnitudA correlation coefficient of ±1 means that the dependent variable moves as the independent variables moves too.
0 means that the dependent variable can move or not no matter how the independent variable changes.
As ±0.89 is near to ±1, we can say that in this case dependent and independent variable are related.
SignWhen the coeffitcient of correlation is negative it means that if the independent variable goes up, the dependent goes down, and visceversa.
In this case, while one decreases the other increases.
Answer: as the independent value increases, the dependent value decreases.
some animals on farms eat hay to get energy. A cow can eat 24 pounds of hay each day Write and evaluate an expression to find how many pounds a group of 12 cows can eat in two weeks. will send image
1 day a cow can eat = 24 pounds
1 day 12 cows can eat = 24 x 12
2 weeks = 14 days
therefore:
12 cows can eat in two weeks = 24 x 12 x 14 or 12 ( 24x14 )
answer: A. 12(24x14)
Use the multiplication method to solve the following systems of equations. c + 3t = 7 and 3c – 2t = –12
5x – 4z = 15 and –3x + 2z = 21
–4m + 3n = 50 and 2m + n = 10
2p – 4q = 18 and –3p + 5q = 22
3a + 4b = 51 and 2a + 3b = 37
After solving the system of equations we get the values as:
c=-2 and t=3x= -57 and z=-75m=-2 and n=14p=-89 and q=-49a=5 and b=9Given the equations are as follows, we need to solve them using multiplication method:
c+3t=7 and 3c-2t=-12take c+3t=7
rearrange the terms.
c = 7-3t
substitute c value in other equation.
3(7-3t)-2t=-12
21-9t-2t=-12
21-11t=-12
-11t = -12-21
-11t=-33
t=33/11
t=3
now substitute t value in c = 7-3t
c = 7-3(3)
c=7-9
c=-2
hence t and c values are 3 and -2.
5x – 4z = 15 and –3x + 2z = 21take 5x – 4z = 15
5x = 15+4z
x=15+4z/5
substitute x value in other equation.
-3(15+4z/5)+2z=21
-45-12z+10z=105
-45-2z=105
-2z=105+45
z=-75
substitute z value in x=15+4z/5
x=15+4(-75)/5
x=-57
hence x and z values are -57 and -75.
–4m + 3n = 50 and 2m + n = 10consider, -4m+3n=50
3n = 50+4m
n=50+4m/3
substitute n value in other equation.
2m+n=10
2m+50+4m/3 = 10
6m+50+4m=30
10m=30-50
10m=-20
m=-2
substitute m value in n=50+4m/3
n = 50+4(-2)/3
n = 50-8/3
n = 42/3
n = 14
hence m and n values are -2 and 14.
2p – 4q = 18 and –3p + 5q = 22consider 2p - 4q = 18
2p = 18+4q
p = 9+2q
substitute p value in other equation.
-3p+5q=22
-3(9+2q)+5q=22
-27-6q+5q=22
-27-q=22
-q = 22+27
q = -49
now p = 9+2q
p = 9+2(-49)
p = 9-98
p=-89
hence p and q values are -89 and -49.
3a + 4b = 51 and 2a + 3b = 37consider 3a + 4b = 51
3a = 51-4b
a=51-4b/3
substitute a value in other equation.
2(51-4b/3)+3b=37
102-8b+9b=111
102+b=111
b=111-102
b=9
now, a=51-4(9)/3
a = 51-36/3
a = 15/3
a = 5
hence a and b value are 5 and 9.
Therefore, we solved the required system of equations.
Learn more about System of equations here:
brainly.com/question/13729904
#SPJ1
Which subsets of numbers does belong to?
Natural numbers are just counting numbers. It doesn't include a negative number. Integers include both positive and negative whole numbers. rational numbers are fractions that can be expressed as two integers. We can have - 8/1 = - 8
Finally, real numbers is any positive or negative number. It includes integers and rational numbers. Therefore, the subset that contains - 8 would be
real, rational and integer numbers
A teacher determines the linear equation y=12x + 40 best models the number of points a student should earn on a test, y, if the student studies for x hours. Which statement is true
Given the equation:
y = 12x + 40
Where x represents the number of hours and y represents the number of points the student should earn.
To find the correct statement substitute the number of hours and points given for x and y respectively. If the left hand side of the equation equals the right hand side then the statement is the true.
We have:
1. A student who studies for 3 hours should earn about 76 points.
x = 3
y = 76
Substitute 3 for x and 76 for y.
y = 12x + 40
76 = 12(3) + 40
76 = 36 + 40
76 = 76
This statement is true.
2.
An unsharpened, round pencil is in the shape of a right circular cylinder. For one such pencil, the radius is 4.6 mm and the length is 167.7 mm. Find the volume of the pencil. Round your answer to the nearest whole number. Do not type the units in the space below. (Be sure to use the pi button on your calculator to do the calculation.)
The volume of the cylindrical pencil to the nearest whole number is 11149cubic millimeters
What is a cylinder?A cylinder is a 3-D shape consisting of two circular bases, joined by a curved surface. The center of the circular bases overlaps each other to form a right cylinder.
The volume of a cylinder is πr^2h
r is the radius, h is the height or length of the cylinder
putting the values of r and h in the formula and π=3.142
V= 3.142×4.6×4.6×167.7
there the volume of the cylindrical pencil is 11149cubic millimeters ( nearest whole number)
learn more about cylinders from
https://brainly.com/question/23935577
#SPJ1
Jason assembles bicycles for the Comer Bike Shop.He can assemble three racing bikes in five hours but itonly takes two hours to assemble six beach cruisers.Match each type of bicycle to the graph that representsthe average number of hours needed to assemble it. (2.)
we have that
He can assemble three racing bikes in five hours-----> ordered pair (5,3)
takes two hours to assemble six beach cruisers -----> ordered pair (2,6)
therefore
the graph of racing bikes is the graph at the left -----> y=(3/5)x
the graph of beach cruisers is the graph at the right-----> y=3x
What kind of polyhedron can be assembled from this net?
It could be assembled a rectangular prism
and
I need help with my math
Answer:
The fourth choice: y+3 = 1(x+2); y= x-1
Explanation:
The point slope form of a linear equation is
[tex]y-y_0=m(x-x_0)[/tex]where (x0,y0) is a point on the line and m is the slope.
Now we first calculate the slope.
[tex]m=\frac{3-(-3)}{4-(-2)}=\frac{6}{6}=1[/tex]therefore, we have
[tex]y-y_0=1(x-x_0)[/tex]Now we use (x0, y0) = (-2, -3) and get
[tex]y-(-3)_{}=1(x-(-2))[/tex][tex]\boxed{y+3=1\mleft(x+2\mright)}[/tex]which is our equation in point-slope form.
Now, we convert the equation above into the slope-intercept form.
Subtracting 3 from both sides gives
[tex]y+3-3=x+2-3[/tex][tex]\boxed{y=x-1}[/tex]which is the equation in slope-intercept form.
Hence, the answer to the question is
[tex]y+3=1(x+2);y=x-1[/tex]which is the fourth option.
Enter the explicit and recursive equations for the sequence 2, -4, -10, -16 Please HELP
The explicit and recursive forms of the arithmetic sequence are f(n) = 2 - 6 · (n - 1) and f(n) = f(n - 1) - 6, f(1) = 2, respectively.
How to derive equations for the elements of an arithmetic sequence
In this problem we need to find the explicit and recursive equations for an arithmetic sequence, whose definitions are described below:
Explicit form
f(n) = a + r · (n - 1)
Recursive form
f(n) = f(n - 1) + r, f(1) = a
Where:
a - First element of the sequence.r - Common difference.n - Index of the n-th element of the sequence.If we know that a = 2, r = - 6, then the explicit and recursive forms of the sequence are:
Explicit form
f(n) = 2 - 6 · (n - 1)
Recursive form
f(n) = f(n - 1) - 6, f(1) = 2
The first four elements of the sequence generated by the formulas are 2, - 4, - 10, - 16.
To learn more on arithmetic sequences: https://brainly.com/question/10396151
#SPJ1
solve. 45÷n=5 problem
PLS HELP Quadrilateral ABCD is located at A(-2, 2), B(-2, 4), C(2, 4), and D(2, 2). The quadrilateral is then transformed using the rule (x + 7, y - 1) to form the imagecoordinates of A', B', C', and D'? Describe what characteristics you would find if the corresponding vertices were connected with line segments
Given:
The coordinates of Quadrilateral ABCD is A(-2, 2), B(-2, 4), C(2, 4), and D(2, 2).
The quadrilateral is transformed with the rule,
[tex](x,y)\rightarrow\mleft(x+7,y-1\mright)[/tex]It becomes,
[tex]\begin{gathered} A\mleft(-2,2\mright)\rightarrow A^{\prime}\mleft(-2+7,2-1\mright)=A^{\prime}(5,1) \\ B\mleft(-2,4\mright)\rightarrow B^{\prime}(-2+7,4-1)=B^{\prime}(5,3) \\ C\mleft(2,4\mright)\rightarrow C^{\prime}(2+7,4-1)=C^{\prime}(9,3) \\ D(2,2)\rightarrow D^{\prime}(2+7,2-1)=D^{\prime}(9,1) \end{gathered}[/tex]Now, join the corresponding vertices of both the quadrilateral with the line segment.
After joining the vertices of the quadrilateral ABCD and A'B'C'D'. it gives the 3-dimensional shape- a rectangular prism.
Write the equation of the function in the graph.. Please show all of your work so i can understand
The vertex form of a parabola is:
[tex]y=a(x-h)^2+k[/tex]where (h, k) is the vertex of the parabola and a is some constant.
From the graph, the vertex is located at (1, 4), that is, h = 1 and k = 4.
Substituting with these values and the point (0, 3), we get:
[tex]\begin{gathered} 3=a(0-1)^2+4 \\ 3-4=a(-1)^2 \\ -1=a\cdot1 \\ -\frac{1}{1}=a \\ -1=a \end{gathered}[/tex]Then, the equation of the function is:
[tex]\begin{gathered} y=-1(x-1)^2+4 \\ y=-(x-1)^2+4 \end{gathered}[/tex]a line intersects the points (2,2) and (-1, 20).What is the slope of the line in simplest form?m = _
Given: The points a line intersects as shown below
[tex]\begin{gathered} Point1:(2,2) \\ Point2:(-1,20) \end{gathered}[/tex]To Determine: The slope of the line in its simplest form
Solution
The formula for finding the slope of two points is as shown below
[tex]\begin{gathered} Point1:(x_1,y_1) \\ Point2:(x_2,y_2) \\ slope=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]Let us apply the formula to the given points
[tex]\begin{gathered} Points1(x_1,y_1)=(2,2) \\ Point2(x_2,y_2)=(-1,20) \\ slope=\frac{20-2}{-1-2} \\ slope=\frac{18}{-3} \\ slope=-6 \end{gathered}[/tex]Hence, the slope of the line in simplest form is -6
Write a value that will make the relation not represent a function
Given:
There are given that the data for x and y are in the form of a table.
Explanation:
According to the concept of function:
The function is not defined when the value of x will be repeated.
That means if the input value is repeated again and again then the given relation will not function.
In the given relation, we can put 7 into the input box.
Final answer:
Hence, the value is 7.
37. The average height of American adult males is 177 cm, with a standard deviation of 7.4 cm. Meanwhile, the average height of Indian males is 165 cm, with a standard deviation of 6.7 cm. Which is taller relative to his nationality, a 173-cm American man or a 150-cm Indian man? The American man The Indian man
ANSWER
The American man
EXPLANATION
To find the man that is taller relative to his nationality, we have to find the z-score of both men. The z-score represents how far away from the mean that a data value is.
To find the z-score, apply the formula:
[tex]z=\frac{x-\mu}{\sigma}[/tex]where x = data value; μ = mean; σ = standard deviation
For the American man, the z-score is:
[tex]\begin{gathered} z=\frac{173-177}{7.4} \\ z=\frac{-4}{7.4} \\ z=-0.541 \end{gathered}[/tex]For the Indian man, the z-score is:
[tex]\begin{gathered} z=\frac{150-165}{6.7} \\ z=\frac{-15}{6.7} \\ z=-2.239 \end{gathered}[/tex]We see that the American man has a height with a z-score higher than that of the Indian man.
This means that the American man is taller than the Indian man relative to their nationalities.
triangle QRS is shown below using the information given determine the measure of r
Identify the domain and range of the relation. Is the relation a function? Why or why not?
{(-3, 1), (0, 2), (1, 5), (2, 4), (2, 1)}
Domain: {-3, 0, 1, 2}
Range: {1, 2, 4, 5}
The relation is not a function because one of its x-values has two corresponding y-values.
What is the Domain and Range of a Relation?All the set of values of x in a relation are referred to as the range of a relation, while all the set of values of y in a relation are called the domain of the relation.
How to Determine if a Relation is a Function?If each of the x-values in a relation all have only one possible corresponding y-value, then the relation is a function.
Given the relation, {(-3, 1), (0, 2), (1, 5), (2, 4), (2, 1)}:
The domain is: {-3, 0, 1, 2}
The range is: {1, 2, 4, 5}
The relation has two y-values, 4 and 1, that corresponds to the x-value, 2. Therefore, it is not a function.
Learn more about functions on:
https://brainly.com/question/10439235
#SPJ1
The given relation is not a function because its x-values have two corresponding y-values. Domain: {-3, 0, 1, 2} and Range: {1, 2, 4, 5}
What is the Domain and Range of a Relation?The domain of a function is the set of all the possible input values that are valid for the given function.
The range of a function is the set of all the possible output values that are valid for the given function.
Given the relation as {(-3, 1), (0, 2), (1, 5), (2, 4), (2, 1)}
Therefore,
The domain will be: {-3, 0, 1, 2}
The range will be: {1, 2, 4, 5}
The relation has two y-values, 4 and 1, which corresponds to the x-value, 2.
The given relation is not a function because its x-values have two corresponding y-values. Domain: {-3, 0, 1, 2} and Range: {1, 2, 4, 5}
Learn more about functions on:
brainly.com/question/10439235
#SPJ1
I need help with this problem it says to find the area of each shaded sector and round to the hundredth place
Answer:
1330.81 square feet
Explanation:
In the circle, there are two unshaded sectors with central angles 26° and 90°.
The sum of the central angles = 360°.
Therefore, the sum of the central angle of the shaded sectors will be:
[tex]360\degree-(26\degree+90\degree)=244\degree[/tex]The area of a sector is calculated using the formula:
[tex]A=\frac{\theta}{360\degree}\times\pi r^2\text{ where }\begin{cases}Central\; Angle,\theta=244\degree \\ Radius,r,HK=25ft\end{cases}[/tex]Substitute the values into the formula:
[tex]\begin{gathered} A=\frac{244}{360}\times\pi\times25^2 \\ =1330.8136 \\ \approx1330.81\; ft^2 \end{gathered}[/tex]The area of the shaded sector is 1330.81 square feet (rounded to the hundredth place).
!!!!!!!???!??!???!!!???!!??!
!!!!!!!???!??!???!!!???!!??! is equal to 111111222122211122211221
Would you rather have a savings account that pays 5% interest compounded semiannually or one that pays 5% interest compounded daily? Explain.
Saving account that pays 5% interest compounded daily is much better than the account that pays 5% interest compounded semiannually.
As given in the question,
Interest rate = 5%
Types of account = Saving account
Pays the interest in two forms :
Compounded semiannually and Compounded daily
Saving account that pays 5% interest compounded daily is much better than the account that pays 5% interest compounded semiannually.
Reason :
Frequency of interest given on compounded daily is much higher and increase the amount much faster as compare to compounded semiannually.
When interest compounded daily generate 365 compounding periods a year, where as compounded semiannually generates two times in a year.
Therefore, saving account that pays 5% interest compounded daily is much better than the account that pays 5% interest compounded semiannually.
Learn more about interest here
brainly.com/question/13324776
#SPJ1
How much should be invested now at an interest rate of 7% per year, compounded continuously, to have 2000 dollars in three years? Do not round intermediate computations, and round your answer to the nearest cent
Answer:
The amount that should be invested is $1621.16
Explanation:
The formula for continuous compound interest is:
[tex]A=Pe^{rt}[/tex]Where:
A is the amount of money after t years
P is the invested amount (what we want to find, in this case)
r is the rate of compounding in decimal
t i the amount of time compounding, in years
Then, in this case:
A = $2000
r = 0.07 (to convert percentage to decimal, we divide by 100: 7% / 100 = 0.07)
t = 3 years
Then:
[tex]2000=Pe^{0.07\cdot3}[/tex][tex]2000=Pe^{0.21}[/tex][tex]P=\frac{2000}{e^{0.21}}\approx1621.16849[/tex]To the nearest cent, P = $1621.16
check the image I got y=-xsqrt3/3 but I want to double check
Answer:
To convert the polar equation to a rectangular equation .
Given polar equation is,
[tex]\theta=\frac{11\pi}{6}[/tex]we know the convertion of polar coordinates (r,theta) to rectangular equation as,
[tex]\begin{gathered} x=r\cos \theta \\ y=r\sin \theta \end{gathered}[/tex]we get,
[tex]\theta=\frac{11\pi}{6}=(2\pi-\frac{\pi}{6})[/tex]Substitute this in the above equation we get,
[tex]\begin{gathered} x=r\cos (2\pi-\frac{\pi}{6}) \\ \\ y=r\sin (2\pi-\frac{\pi}{6}) \end{gathered}[/tex]Solving we get,
[tex]\begin{gathered} x=r\cos (\frac{\pi}{6}) \\ \\ y=-r\sin (\frac{\pi}{6}) \end{gathered}[/tex]we get,
[tex]x=r(\frac{\sqrt[]{3}}{2})[/tex][tex]y=-r(\frac{1}{2})[/tex]Substitute r=-2y in x we get,
[tex]x=-2y(\frac{\sqrt[]{3}}{2})[/tex][tex]y=-\frac{x}{\sqrt[]{3}}[/tex][tex]y=-\frac{\sqrt[]{3}x}{3}[/tex]The required rectangular form of the given plar equation is,
[tex]y=-\frac{\sqrt[]{3}x}{3}[/tex]Which system of linear equations could be used to determine the price of each book
Answer:
Let the price of the maths book be m and price of the novel book be n
Given that,
Total cost of the books is $54
The price of math book is $8 more than 3 times the price of novel book.
we get,
The system of equation as,
[tex]\begin{gathered} m+n=54 \\ m=8+3n \end{gathered}[/tex]Hence the system of equation to determine the price of the maths and novel book is,
[tex]\begin{gathered} m+n=54 \\ m=8+3n \end{gathered}[/tex]Question 2 Multiple Choice Worth 2 points)(08.07 LC)Two friends are reading books. Jimmy reads a book with 21,356 words. His friend Bob reads a book with one-and-a-half times as many words. Which expressionrepresents the number of words Bob reads?O 21,356 x 2O 21,356 x6 x 1nents1adesO 21,356 xO 21.356 x112Question 3 Multiple Choice Worth 2 points)(08.07 LC)Question 1 (Answered)OVIOUS QuestionNexd Quest
The number of words of the book Jimmy reads os 21,356, and the number of words of the book Bob reads is one-and-a-half times (that is, 1.5x) as many words, so to find the number of words Bob reads, we just need to multiply the number of words of Jimmy's book by the factor of 1.5:
[tex]21356\cdot1.5=32034[/tex]“John is buying carpet for his house. He pays $1.30 per square foot for the first 1000 square feet. He pays $1.00 peradditional square foot after 1000 square feet.Part A: Write an equation for the total price when John buys less than 1000 square feet of carpet. Let c representthe amount of carpet needed in square feet, and p represent the total price in dollars.Enter vour equation in the first response boxPart B: John calculates that the total price will be $1500. How many square feet of carpet will he buy?Place your answer in the second response box”
EXPLANATION:
Given:
We are told that John pays $1.30 per square foot for the first 1000 square feet of carpet he buys. Then he pays $1.00 per additional square foot after the first 1000 square feet.
Required:
We are required to write an equation to represent the total price when he buys less than 1000 square feet.
Step-by-step solution;
Take note that he pays $1.30 per square foot for the first 1000 square feet. The amount spent, that is the price would be represented by p while, c would represent the amount of carpet to be bought.
Hence, for buying less than 1000 square feet;
[tex]p=1.30c[/tex]Next we note that John calculates that the total price would be $1500.
If John pays the amount of $1.30 for the first 1000 square feet, then he would have paid;
[tex]p=1.30(1000)[/tex][tex]p=1300[/tex]However, we are told that John calculates a total of $1500. This simply means that he will buy more than 1000 square feet of carpet.
He is going to spend an extra $200 (that is 1500 minus 1300). The cost of any extra foot after the first 1000 is $1.00. That means;
[tex]Extra\text{ }carpet=\frac{200}{1.00}[/tex][tex]Extra\text{ }carpet=200ft^2[/tex]That means John would be paying the sum of $1500 to buy 1,200 square feet of carpet.
ANSWER:
[tex]\begin{gathered} Part\text{ }A: \\ p=1.30c \end{gathered}[/tex][tex]\begin{gathered} Part\text{ }B: \\ 1200ft^2 \end{gathered}[/tex]