Men will have completed oil changes in hours Therefore, Will and Gabriel will each have done 12 oil changes after 4 hours.
What is hours?Hours is a unit of time measurement. It is used to measure a specific amount of time and is usually denoted by the symbol “h”. There are 24 hours in a day, 60 minutes in an hour and 60 seconds in a minute. Hours are used to measure both short and long periods of time. Commonly, hours are used to measure the length of a workday, the length of a school day, or the length of a movie. Hours are also used to measure how long a person has been alive, how long an event has been going on, or how long an item has been in use.
Let W be the total number of oil changes Will has completed, and G be the total number of oil changes Gabriel has completed.
System of equations:
W = 8 + 2t
G = 3t
Since they will be tied at some point during the day, W = G.
Substituting W into G's equation:
8 + 2t = 3t
Solving for t:
2t = 8
t = 4
To learn more about hours
https://brainly.com/question/30403028
#SPJ1
PACKAGING A video game system is packaged in a box that is in the shape of a cube. The length of the packaging box is 4x^2 y^5 . What is the volume of the packaging box in terms of x and y?
Answer: 64x^6y^15
Step-by-step explanation:
If the packaging box is in the shape of a cube, then all its sides are equal in length. Let's call the length of each side "s".
We know that the length of the packaging box is 4x^2 y^5, so:
s = 4x^2 y^5
To find the volume of the packaging box, we need to calculate s^3 (since the box is a cube).
s^3 = (4x^2 y^5)^3
s^3 = 4^3 (x^2)^3 (y^5)^3
s^3 = 64x^6 y^15
Therefore, the volume of the packaging box in terms of x and y is 64x^6 y^15.
Given f(x)=5x+7 and g(x)=2x+2, find g(g(1-3w))
Enter as the final value or expression without parentheses
As a result, the final number or expression is g(g(1-3w)) ≈ -12w + 10 (without parenthesis).
Which of these are they known as?When adding extraneous information or perhaps an afterthought to a sentence, parentheses, a pair or punctuation marks, are most frequently utilized. Two curving vertical lines can be seen in parentheses: ( ).
We must first evaluate g(1-3w) and then re-insert that result into g(x) in order to determine g(g(1-3w)).
We must first determine g(1-3w):
Substitute x with 1-3w to get g(x) ≈ 2x + 2 and g(1-3w) ≈ 2(1-3w) + 2.
g(1-3w) ≈ 2 - 6w + 2 (distribute the 2)
g(1-3w) ≈ -6w + 4 (combine similar terms) (combine like terms)
We can again again enter the result of g(1-3w) into g(x):
If you substitute g(1-3w) for x, then g(x) ≈ 2x + 2 g(g(1-3w)) ≈ 2(-6w Plus 4) + 2
g(g(1-3w)) ≈ -12w + 8 + 2 (allocate the 2) (distribute the 2)
g(g(1-3w)) ≈ -12w + 10 (combine comparable terms) (combine like terms)
To know more about parentheses visit:
https://brainly.com/question/28146414
#SPJ1
a high school baseball player has a 0.253 batting average. in one game, he gets 8 at bats. what is the probability he will get at least 6 hits in the game?
The probability of a high school baseball player getting at least 6 hits in one game, given a 0.253 batting average, when he gets 8 at-bats, is 0.0197 or approximately 2%.
Given, the high school baseball player's batting average is 0.253, which means in 100 times he hits the ball, he will make 25.3 hits on average. We need to find the probability of getting at least 6 hits in a game when he gets 8 at-bats.
We will calculate the probability using the Binomial Probability formula. Here, the number of trials is 8, and the probability of success is 0.253. We need to find the probability of getting at least 6 hits.
P(X≥6) = 1 - P(X<6)
P(X<6) = ∑P(X=i), i=0 to 5
We can use the Binomial Probability Table to find these probabilities or use the Binomial Probability formula.
P(X<6) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5)
= C(8,0) (0.253)^0 (1 - 0.253)^8 + C(8,1) (0.253)^1 (1 - 0.253)^7 + C(8,2) (0.253)^2 (1 - 0.253)^6 + C(8,3) (0.253)^3 (1 - 0.253)^5 + C(8,4) (0.253)^4 (1 - 0.253)^4 + C(8,5) (0.253)^5 (1 - 0.253)^3
≈ 0.9799
Therefore, P(X≥6) = 1 - 0.9799
= 0.0201 or approximately 2%.
Hence, approximately 0.0197 or 1.97% is the probability of a high school baseball player, who has a batting average of 0.253, obtaining at least 6 hits when given 8 at-bats during a single game.
To know more about probability refer here:
https://brainly.com/question/1596693#
#SPJ11
What is the endpoint of a line segment with these points? Endpoint: Z(–21, 15) Midpoint: M(–13, 29) (–5, 43) (–17, 22) (–27, 21) (–29, 1)
Answer: A - (-5, 43)
Step-by-step explanation:
I need help with dis math
consider the differential equation given by[math equation]the goal of this problem is to solve this differential equation numerically, analytically and compare the solutions. find the exact solution (i.e. the analytical solution) use euler's method to solve the differential equation with a step size h=0,001; (this is the numerical solution)
The number of iterations increases. If there is a significant difference between the two solutions, we may need to investigate the numerical method used or check for errors in our analytical solution.
Step-by-step explanation:
The differential equation is missing in your question. However, I will give a general overview of how to solve a differential equation numerically using Euler's method and how to find an analytical solution.
Numerical Solution using Euler's Method:
Suppose we have a first-order differential equation of the form y' = f(x, y), where y' represents the derivative of y with respect to x. To solve this numerically using Euler's method, we need to start with an initial condition y(x0) = y0, and we want to find the value of y at some other point x1 = x0 + h.
The Euler's method involves approximating the derivative y' by the difference quotient (y1 - y0) / h, where y1 is the value of y at x1. Rearranging this equation, we get:
y1 = y0 + h * f(x0, y0)
Using this equation, we can iteratively compute the value of y at different points by using the previous value of y. For example, to find y2, we can use the equation:
y2 = y1 + h * f(x1, y1)
We continue this process until we reach the desired endpoint.
Analytical Solution:
An analytical solution to a differential equation is an explicit expression for y(x) that satisfies the differential equation for all values of x. To find an analytical solution, we may use techniques such as separation of variables, integrating factors, or other methods specific to the type of differential equation.
For example, if we have a differential equation of the form y' = k * y, where k is a constant, we can use separation of variables to obtain:
dy / y = k * dx
Integrating both sides, we get:
ln|y| = k * x + C
where C is an arbitrary constant of integration. Solving for y, we get:
y = Ce^(kx)
where C = ±e^C is a constant determined by the initial condition.
Comparison of Solutions:
Once we have the numerical and analytical solutions, we can compare them by plotting the graphs of y(x) for each method. If the numerical solution was computed with a small enough step size, it should converge to the analytical solution as the number of iterations increases. If there is a significant difference between the two solutions, we may need to investigate the numerical method used or check for errors in our analytical solution.
To learn more about approximating visit:
https://brainly.com/question/30945002
#SPJ11
the volume of a cube decreases at a rate of 6 m 3 / s . find the rate at which the side of the cube changes when the side of the cube is 4 m . answer exactly or round to 2 decimal places.
The rate at which the side of the cube changes when the side of the cube is 4 m is -1/8 m/s (or approximately -0.125 m/s).
Let's use the formula for the volume of a cube:
V = s³
where V is the volume and s is the length of one side of the cube. To find the rate of change of the side length, we need to differentiate this formula with respect to time t:
dV/dt = d/dt (s³) = 3s² ds/dt
We know that dV/dt = -6 m³/s (the negative sign indicates that the volume is decreasing), and when s = 4 m, we have:
-6 = 3(4²) ds/dt
Simplifying this equation gives us:
ds/dt = -6 / (3*4²) = -1/8 m/s
Learn more about cube here: brainly.com/question/30962206
#SPJ4
Pls just say a b c or d
A triangle with side lengths 7, 6, 4 is
Acute
Right
Obtuse
Right
so 7 is the hypotenuse because it is the biggest. so you have to use 6 and 4 in the formula to see if they equal 7.
(a)²+(b)²=c²
(6)²+(4)²=c²
36+16=c²
(square root) 52=c²
the square root of 52 is 7
so therefore it is a right triangle.
What is the simplest form of 8(5k+7)−10(6k−7)
The simplest form of the given expression is -20k + 126.
To find the simplest form of the expression 8(5k+7)−10(6k−7), follow these steps:
1. Distribute the numbers outside the parentheses to the terms inside the parentheses:
8 × 5k + 8 × 7 - 10 × 6k + 10 × 7
2. Perform the multiplication:
40k + 56 - 60k + 70
3. Combine like terms (terms with the same variable and exponent):
(40k - 60k) + (56 + 70)
4. Simplify the expression by performing the subtraction and addition:
-20k + 126
The simplest form of the given expression is -20k + 126.
for such more question on simplest form
https://brainly.com/question/344788
#SPJ11
Prove that the following statement is false. There exists an integer n such that 6n2 + 27 is prime. To prove the statement is false, prove the negation is true. Write the negation of the statement. For every integer n, 6n² + 27 is prime. For every integer n, 6n2 + 27 is not prime. There exists an integer n, such that 6n2 + 27 is not prime. There exists a composite number q = 6n2 + 27, such that n is an integer. There exists an integer n, such that 6n2 + 27 is prime. Now prove the negation. Suppose n is any integer. Express 6n2 + 27 as the following product: 6n2 + 2 Now is an integer because sums and products of integers are integers. Thus, 6n2 + 27 is not prime because it is a
The negation of the statement "There exists an integer n such that 6n2 + 27 is prime" is "For every integer n, 6n2 + 27 is not prime."
To prove the negation, we can use algebraic manipulation to show that 6n2 + 27 is always composite.
Suppose n is any integer. We can factor out 3 from 6n2 + 27 to get 3(2n2 + 9). Since 2n2 + 9 is always odd (2 times any integer is even, and adding 9 makes it odd), we can further factor it as (2n2 + 9) = (2n2 + 6n + 9 - 6n) = [(2n+3)(n+3)] - 6n.
Substituting this expression back into 3(2n2 + 9), we get 3[(2n+3)(n+3) - 6n]. Since (2n+3)(n+3) - 6n is an integer, 3[(2n+3)(n+3) - 6n] is composite for every integer n. Therefore, 6n2 + 27 is not prime for any integer n.
For more questions like Integer click the link below:
https://brainly.com/question/490943
#SPJ11
if one flag pole is y feet tall and casts a shadow x feet long, then how tall is another nearby flag pole that casts a shadow p feet long at the same time of day?
If one flag pole is y feet tall and casts a shadow x feet long, and another nearby flag pole casts a shadow p feet long at the same time of day, we can use similar triangles to determine the shadow of the second flag pole.
In this scenario, the two flag poles and the ground form two similar right triangles. The height of the first flag pole (y) corresponds to one leg of the first triangle, and the length of its shadow (x) corresponds to the other leg.
Similarly, the height of the second flag pole (h) corresponds to one leg of the second triangle, and the length of its shadow (p) corresponds to the other leg.
Therefore, the height of the second flag pole is equal to the product of the height of the first flag pole and the length of the shadow of the second flag pole, divided by the length of the shadow of the first flag pole.
For more details about shadow click here:
https://brainly.com/question/31162142#
#SPJ11
I need help with this please
a sample of test scores is normally distributed with a mean of 120 and a standard deviation of 10. what score is located 2 standard deviations below the mean? g
The score located 2 standard deviations below the mean is 100. This score can be found by subtracting 2 standard deviations (20) from the mean (120).
The normal distribution is a bell-shaped curve that is symmetrical around the mean. This means that if you calculate the number of standard deviations away from the mean, you can use the same number to calculate how many standard deviations away from the mean the score is.
For example, in this question, the mean is 120 and the standard deviation is 10. To find the score located 2 standard deviations below the mean, subtract 2 standard deviations from the mean. This means the score is 120 - 20 = 100.
In general, the formula for calculating the score located x standard deviations away from the mean is:
Score = Mean + (x * Standard Deviation)
For example, to find the score located 4 standard deviations away from the mean, the formula is:
Score = Mean + (4 * Standard Deviation)
In this example, the score is 120 + (4 * 10) = 160.
In summary, to find the score located x standard deviations away from the mean, use the formula:
Score = Mean + (x * Standard Deviation)
See more about normal distribution at: https://brainly.com/question/14243195
#SPJ11
When the temperature drops below 15°C in a building, the furnace turns on.
At what temperatures will the heater turn on? Write an inequality to represent
this situation, and graph the solution on a number line.
The inequality to represent this situation is T < 15°C, where T is the temperature.
What is inequality?Inequality is a statement that two values, expressions, or quantities are not equal. Inequality is usually represented by the symbols ">", "<", "≥", or "≤".
This inequality can be graphed on the number line by representing 15°C as a point on the number line. Any values to the left of 15°C, such as 14°C, 13°C, and so on, would be represented as points to the left of 15°C on the number line.
Less than inequality is used to compare two values to see if one is less than the other. In this case, the inequality T < 15°C states that the temperature T must be less than 15°C in order for the furnace to turn on.
Graphically, the solution to this inequality is represented by a number line with a point at 15°C and all points to the left of 15°C represented in the solution set.
For more questions related to number line
https://brainly.com/question/25230781
#SPJ1
An isosceles right triangle is removed from
each corner of a square piece of paper, as
shown, to create a rectangle. If AB = 12 units,
what is the combined area of the four removed
triangles, in square units?
The combined area of the four removed triangles is 48 sq.units. Answer: 48
We need to find out the combined area of the four removed triangles, in square units. Given: AB = 12 units.
Let's consider the given square, and let's draw an altitude BD and also draw perpendiculars to BD from the three vertices A, C and D.
Let AB = x cm. Area of square = x² sq.cm.
Now, we are cutting a triangle with base x and height x, which is a right-angled triangle. Hence, area of each removed triangle = (1/2) * x * x = (x²/2) sq.cm.
Now, BD = x/√2. Area of rectangle = AB * BD = 12 * 12/√2 = 72√2 sq.cm.
Now, area of 4 triangles = (x²/2) + (x²/2) + (x²/2) + (x²/2) = 2x² sq.cm.
We know that, Area of rectangle = Area of 4 triangles + Area of square => 72√2 = 2x² + x² => 72√2 = 3x² => x² = 24√2 cm² => x = √(24 * 2) cm = √(48) cm = 4√3 * √2 cm.
Area of 4 triangles = 2x² sq.cm = 2 * 24 cm² = 48 sq.cm.
Hence, the combined area of the four removed triangles is 48 sq.units. Answer: 48.
To learn more about area, refer below:
https://brainly.com/question/27683633
#SPJ11
A line that includes the points (t,5) and (10, – 4) has a slope of – 9. What is the value of t? t
Answer:
The value of t is 9.
Step-by-step explanation:
The slope of a line passing through two points (x1, y1) and (x2, y2) is given by:
slope = (y2 - y1) / (x2 - x1)
In this case, we are given two points: (t, 5) and (10, -4), and the slope is given as -9. So we can set up the equation:
-9 = (-4 - 5) / (10 - t)
Simplifying, we get:
-9 = -9 / (10 - t)
Multiplying both sides by (10 - t), we get:
-9(10 - t) = -9
Expanding the left side, we get:
-90 + 9t = -9
Adding 90 to both sides, we get:
9t = 81
Dividing both sides by 9, we get:
t = 9
Therefore, the value of t is 9.
if you have $11 and save $5 each week how much money you will have after 6 weeks
Answer: 41$
Step-by-step explanation:
This is because 5x6=30 (To find how much money is made)
then 11+30=41 (add both amounts)
what is the value of t?
Answer:
t=36°
Step-by-step explanation:
90-54=36
opposite angles are equal so t=36°
A business owner applies for a credit card to cover $14,000 in emergency expenses. The credit card charges 16.99% annual interest compounded continuously. If no payments are made for 2 years, what will the balance on the card be, rounded to the nearest penny?
Credit card charges $19665.33 will the balance on the card be, rounded to the nearest penny.
What is interest in simple words?
When you borrow money, you must pay interest, and when you lend money, you must charge interest. The most common way to represent interest is as a percentage of a loan's total amount per year. The interest rate for the loan is denoted by this proportion.
Interest is the cost of borrowing money and is typically stated as a percentage, such an annual percentage rate (APR). Lenders may charge interest to borrowers for the use of their funds, or borrowers may charge interest to lenders for the use of their funds.
amount applied for = $14,000
interest rate = 16.99%
the balance after 2 years
P₀ = $1400
r = 16.99% = 0.1699
t = 2
[tex]P_{0} = P_{0}e^{rt}[/tex]
[tex]P_{2} = 1400e^{0.1699 * 2}[/tex]
≈ $19665.33
Learn more about Interest
brainly.com/question/30393144
#SPJ1
given the following frequency table of values, is the mean, median, or mode likely to be the best measure of the center for the data set? valuefrequency 351 364 376 386 395 631
For the given following frequency table of values 351, 362, 373, 381, 391, The mode is likely to be the best measure of the center for the data set.
The given frequency table is as follows:
Value frequency 351, 362, 373, 381, 391.
To find the most appropriate measure of central tendency for a dataset, we need to analyze the spread of data.
The mean, median, and mode are measures of central tendency in statistics.
We can find the following measures from the given data set:
Mean: It is calculated by summing up all the values and then dividing the result by the total number of values. This measure of central tendency is appropriate when the data are symmetrical.
Median: It is the middle value of the data set when arranged in order. It is suitable for skewed data.
Mode: It is the most common value in the data set. It is appropriate when data is discrete. The data in the frequency table appear to be discrete.
Because the data are discrete, the most appropriate measure of central tendency is the mode. So, the mode is likely to be the best measure of the center for the given value frequency data set.
Learn more about the mean, median, and mode at: https://brainly.com/question/14532771
#SPJ11
What is the greatest common factor of 9, 24, and 30
Answer: 3
Step-by-step explanation:
9/3=3
24/3= 8
30/3=10
A house plan has concrete stairs leading down into the garage. How much concrete is needed to make the stairs? 3 ft 2 ft 8 ft 5 ft [? ] ft ³ 2 ft 8 ft 1 ft
The amount of concrete needed to make the stairs that leads to the garage is 64 cubic feet
Calculating the amount of concrete needed to make the stairs?The missing information is added as an attachment
The concrete needed to make the stairs is the volume of the stairs and this is calculated using
Volume = Base area * Height
Where
Base area = 3 * 2 + 2 * 1
Base area = 8
And
Height = 8
So, we have
Volume = 8 * 8
Evaluate
Volume = 64
Hence, the amount needed is 64 cubic feet
Read more about volume at
https://brainly.com/question/463363
#SPJ1
what is the future value of 6000 earning 18% interest, compounded monthly for 8 years
Answer:
To calculate the future value of an investment earning compound interest, we can use the formula:
FV = P(1 + r/n)^(nt)
where:
FV is the future value
P is the principal (starting amount)
r is the annual interest rate (as a decimal)
n is the number of times the interest is compounded per year
t is the number of years
In this case, we have:
P = 6000
r = 0.18 (18% annual interest rate)
n = 12 (compounded monthly)
t = 8
Substituting these values into the formula, we get:
FV = 6000(1 + 0.18/12)^(12*8)
FV = 6000(1.015)^96
FV = 6000(3.045)
FV = 18270
Therefore, the future value of $6000 earning 18% interest, compounded monthly for 8 years, is $18,270.
x^2-3x-40=0 solve for x
Answer:
Step-by-step explanation:
x^2-3x-40=0
x^2-3x=40
2x-6x=40
-4x=40
-4x/4 = 40/-4
x= -10
Answer:
x=8 or x=-5
Step-by-step explanation:
x²-3x-40=0
x²-8x+5x-40=0
x(x-8)+5(x-8)=0
(x-8)(x+5)=0
⇒x=8 or x=-5
if you're good at quadratics...
Therefore, the correct answer is: [tex](x+10)^2=82[/tex]. ( right hand side of the equation).
What is equation?An equation is a mathematical statement that indicates that two expressions are equal. It typically contains variables, which are represented by letters, and may also include constants and operators. The general format of an equation is:
expression = expression
For example, the equation x + 2 = 6 means that the expression x + 2 is equal to the expression 6. The goal of solving an equation is to find the value(s) of the variable(s) that make the equation true.
To solve the quadratic equation by completing the square, Jamie needs to follow the steps:
Move the constant term to the right-hand side of the equation:
[tex]x^2 + 20x = -18[/tex]
Add and subtract the square of half the coefficient of x to the left-hand side of the equation:
[tex]x^2 + 20x + (20/2)^2 - (20/2)^2 = -18[/tex]
[tex](x+10)^2 - 100 = -18[/tex]
Simplify the right-hand side of the equation:
[tex](x+10)^2 = 82[/tex]
To know more about coefficient, visit
https://brainly.com/question/30066987
#SPJ1
QUESTION 1. Assume we are testing a function with 3 variables:
Variable A: has values 0 and 1
Variable B: has values 0 and 1
Variable C: has values 0 and 1
What is the total 2-way variable value configuration coverage achieved by the following tests:
A=0; B=0; C=1
A=0; B=1; C=1
A=1, B=0, C=0
The total 2-way variable achieved by the given tests is 6.
How to find 2-way variable?
There are three pairs of variables, and each pair can have two possible values, resulting in 2-way variable value configurations. Therefore, the total 2-way variable value configuration coverage achieved by the given tests is 6, as follows:
A=0, B=0
A=0, C=1
B=0, C=1
A=0, B=1
A=1, B=0
A=1, C=0
Learn more about 2-way variable
brainly.com/question/29435977
#SPJ11
92 divided by 378 I need this rn pls!! If you can help!
Answer:
4 for up but of R it is 10
Step-by-step explanation:
378/92 equals 4 but 10 is the remainder
help i need help with this its very hard
Answer:
3a + 2b
Step-by-step explanation:
Let the unknown side have length X.
X + X + 5a - b + 5a - b = 16a + 2b
2X + 10a - 2b = 16a + 2b
2X = 6a + 4b
X = 3a + 2b
Answer: 3a + 2b
26. In the given figure, OP || RS. ZPQR = 60° and QRS = 130°. Then what is the measure of ZOPQ? S P 60% R 130⁰
Answer: The answer is 60.
Step-by-step explanation:
Using the fact that OP || RS, we know that∠RWV = 180° − 130° 1. ∠RWV = 50° We know that,∠PWQ = ∠RWV = 50° (Since, opposite angles of intersecting lines are equal) Also, for line OP∠OQP + θ = 180° θ = 180° − ∠OPQ = 180° − 110° 2. θ = 70°
Answer:
The measure of ∠OPQ is 110°.
Step-by-step explanation:
Draw a line parallel to OP from point Q. Label a point on the line T. (See attached diagram).
Angles SRQ and TQR are alternate interior angles, and so according to the Alternate Interior Angles Theorem, they are congruent.
⇒ m∠TQR = m∠SRQ = 130°
Given m∠PQR = 60° and m∠TQR = 130° then:
⇒ m∠TQP + m∠PQR = m∠TQR
⇒ m∠TQP + 60° = 130°
⇒ m∠TQP = 70°
Angles OPQ and TQP are same-side interior angles, and so according to the Same-side Interior Angles Theorem, they are supplementary (sum to 180°).
⇒ m∠OPQ + m∠TQP = 180°
⇒ m∠OPQ + 70° = 180°
⇒ m∠OPQ = 110°
Therefore, the measure of ∠OPQ is 110°.