It's important to note that this is a preliminary list, and a detailed engineering study would be required to finalize the equipment selection and sizing based on specific process conditions and requirements.
Based on the provided information, here is a preliminary major equipment list for the plant designed to produce 150,000 metric tons per annum of ammonia:
Feedstock Preparation:
Feedstock Heat Exchanger
Feedstock Filters
Reforming Section:
Primary Reformer
Secondary Reformer
Waste Heat Boiler
Steam Drum
High-Temperature Shift Converter
Low-Temperature Shift Converter
CO2 Removal Unit
Synthesis Loop:
Ammonia Synthesis Converter
Methanation Converter
Separation and Purification:
Ammonia Separator
Ammonia Purification Column
Methane Separator
Methane Purification Column
Compression and Storage:
Ammonia Compressors
Ammonia Storage Tanks
Nitrogen Compressors
Utilities:
Steam Generation Unit
Cooling Tower
Air Compressors
Power Generation Unit
Safety Systems:
Safety Relief Valves
Emergency Shutdown System
Fire Protection Equipment
It's important to note that this is a preliminary list, and a detailed engineering study would be required to finalize the equipment selection and sizing based on specific process conditions and requirements. Additionally, the list does not include all auxiliary equipment and instrumentation required for the plant's operation.
To learn more about engineering study
https://brainly.com/question/17216645
#SPJ11
How many liters of oxygen will be required to react with .56 liters of sulfur dioxide?
Oxygen of 0.28 liters will be required to react with 0.56 liters of sulfur dioxide.
To determine the number of liters of oxygen required to react with sulfur dioxide, we need to examine the balanced chemical equation for the reaction between sulfur dioxide ([tex]SO_2[/tex]) and oxygen ([tex]O_2[/tex]).
The balanced equation is:
2 [tex]SO_2[/tex]+ O2 → 2 [tex]SO_3[/tex]
From the equation, we can see that 2 moles of sulfur dioxide react with 1 mole of oxygen to produce 2 moles of sulfur trioxide.
We can use the concept of stoichiometry to calculate the volume of oxygen required. Since the ratio between the volumes of gases in a reaction is the same as the ratio between their coefficients in the balanced equation, we can set up a proportion to solve for the volume of oxygen.
The given volume of sulfur dioxide is 0.56 liters, and we need to find the volume of oxygen. Using the proportion:
(0.56 L [tex]SO_2[/tex]) / (2 L [tex]SO_2[/tex]) = (x L [tex]O_2[/tex]) / (1 L [tex]O_2[/tex]2)
Simplifying the proportion, we have:
0.56 L [tex]SO_2[/tex]= 2x L [tex]O_2[/tex]
Dividing both sides by 2:
0.56 L [tex]SO_2[/tex]/ 2 = x L [tex]O_2[/tex]
x = 0.28 L [tex]O_2[/tex]
Therefore, 0.28 liters of oxygen will be required to react with 0.56 liters of sulfur dioxide.
It's important to note that this calculation assumes that the gases are at the same temperature and pressure and that the reaction goes to completion. Additionally, the volumes of gases are typically expressed in terms of molar volumes at standard temperature and pressure (STP), which is 22.4 liters/mol.
For more such questions on oxygen visit:
https://brainly.com/question/2111051
#SPJ8