When one person shouts at a football game, the sound intensity level at the center of the field is 60.8 dB. When all the people shout together, the intensity level increases to 88.1 dB. Assuming that each person generates the same sound intensity at the center of the field, how many people are at the game?

Answers

Answer 1

Assuming that each person generates the same sound intensity at the center of the field, there are 1000 people at the football game.

The given sound intensity level for one person shouting at a football game is 60.8 dB and for all the people shouting together, the intensity level is 88.1 dB.

Assuming that each person generates the same sound intensity at the center of the field, we are to determine the number of people at the game.

I = P/A, where I is sound intensity, P is power and A is area of sound waves.

From the definition of sound intensity level, we know that

β = 10log(I/I₀), where β is the sound intensity level and I₀ is the threshold of hearing or 1 × 10^(-12) W/m².

Rewriting the above equation for I, we get,

I = I₀ 10^(β/10)

Here, sound intensity level when one person is shouting (β₁) is given as 60.8 dB.

Therefore, sound intensity (I₁) of one person shouting can be calculated as:

I₁ = I₀ 10^(β₁/10)I₁ = 1 × 10^(-12) × 10^(60.8/10)I₁ = 10^(-6) W/m²

Now, sound intensity level when all the people are shouting (β₂) is given as 88.1 dB.

Therefore, sound intensity (I₂) when all the people shout together can be calculated as:

I₂ = I₀ 10^(β₂/10)I₂ = 1 × 10^(-12) × 10^(88.1/10)I₂ = 10^(-3) W/m²

Let's assume that there are 'n' number of people at the game.

Therefore, sound intensity (I) when 'n' people are shouting can be calculated as:

I = n × I₁

Here, we have sound intensity when all the people are shouting,

I₂ = n × I₁n = I₂/I₁n = (10^(-3))/(10^(-6))n = 1000

Hence, there are 1000 people at the football game.

Learn more about sound intensity https://brainly.com/question/14349601

#SPJ11


Related Questions

An RLC series circuit has a 1.00 kΩ resistor, a 130 mH
inductor, and a 25.0 nF capacitor.
(a)
Find the circuit's impedance (in Ω) at 490 Hz.

(b)
Find the circuit's impedance (in Ω) at 7.50 k

Answers

An RLC series circuit has a 1.00 kΩ resistor, a 130 mH inductor, and a 25.0 nF capacitor.(a)The circuit's impedance at 490 Hz is approximately 1013.53 Ω.(b)The circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.

(a) To find the circuit's impedance at 490 Hz, we can use the formula:

Z = √(R^2 + (XL - XC)^2)

where Z is the impedance, R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.

Given:

R = 1.00 kΩ = 1000 Ω

L = 130 mH = 0.130 H

C = 25.0 nF = 25.0 × 10^(-9) F

f = 490 Hz

First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC):

XL = 2πfL

= 2π × 490 × 0.130

≈ 402.12 Ω

XC = 1 / (2πfC)

= 1 / (2π × 490 × 25.0 × 10^(-9))

≈ 129.01 Ω

Now we can calculate the impedance:

Z = √(R^2 + (XL - XC)^2)

= √((1000)^2 + (402.12 - 129.01)^2)

≈ √(1000000 + 27325.92)

≈ √1027325.92

≈ 1013.53 Ω

Therefore, the circuit's impedance at 490 Hz is approximately 1013.53 Ω.

(b) To find the circuit's impedance at 7.50 kHz, we can use the same formula as before:

Z = √(R^2 + (XL - XC)^2)

Given:

f = 7.50 kHz = 7500 Hz

First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC) at this frequency:

XL = 2πfL

= 2π × 7500 × 0.130

≈ 6069.08 Ω

XC = 1 / (2πfC)

= 1 / (2π × 7500 × 25.0 × 10^(-9))

≈ 212.13 Ω

Now we can calculate the impedance:

Z = √(R^2 + (XL - XC)^2)

= √((1000)^2 + (6069.08 - 212.13)^2)

≈ √(1000000 + 36622867.96)

≈ √37622867.96

≈ 6137.02 Ω

Therefore, the circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.

To learn more about reactance visit: https://brainly.com/question/31369031

#SPJ11