Answer:
8 pounds
Step-by-step explanation:
Simply add the fractions. Think of mixed fractions as whole numbers + fractions.
[tex]4\frac{1}{4} =\\4+\frac{1}{4} \\\\\\3\frac{3}{4} =\\3+\frac{3}{4}[/tex]
Now, add all the terms together:
[tex]4+\frac{1}{4}+3+\frac{3}{4} =\\\\ 7+\frac{4}{4}[/tex]
4/4 can be rewritten as 1, so we have:
[tex]7+\frac{4}{4} =\\\\ 7+1= \\\\8[/tex]
Thus, Sarah and Nathan picked 8 pounds of strawberries altogether.
A rectangular prism is shown in the image.
A rectangular prism with dimensions of 5 yards by 5 yards by 3 and one half yard.
What is the volume of the prism?
twenty eight and one half yd3
forty one and one fourth yd3
eighty seven and one half yd3
166 yd3
The volume of the prism is 87 and 1/2 cubic yards or 87.5 [tex]yd^{3}[/tex]
What is the volume of the prism?The volume of a rectangular prism is given by the formula V = lwh, where l is the length, w is the width, and h is the height.
In this case, the length is 5 yards, the width is 5 yards, and the height is 3 and 1/2 yards. We can convert the height to a mixed number fraction of 7/2 yards.
Therefore, the volume of the prism is:
V = lwh = 5 yards × 5 yards × 7/2 yards = 87.5 cubic yards
So, the volume of the prism is 87 and 1/2 cubic yards or 87.5 [tex]yd^{3}[/tex]
to know more about volume
brainly.com/question/1578538
#SPJ1
Emmy went to play miniature golf on Monday, when it cost $1 to rent the club and ball, plus $2 per game. Liam went Thursday, paying $1 per game, plus rental fees of $5. By coincidence, they played the same number of games for the same total cost. How many games did each one play?
Emmy and Liam each played 4 games according to the given statement.
What is an equation?An equation is a claim that two expressions are equal, typically indicated by the equals symbol (=). In mathematics, equations are used to simulate real-world scenarios, solve problems, and depict relationships between variables.
Exponents, logarithms, and trigonometric functions can all be used in equations, in addition to basic operations like addition, subtraction, multiplication, and division.
Let us suppose the number of games played = x.
Thus, for Emmy we have:
E = 1 + 2x
For Liam the equation is:
L = 5 + 1x
Equating the two equations we have:
1 + 2x = 5 + 1x
x = 4
Hence, Emmy and Liam each played 4 games according to the given statement.
Learn more about equation here:
https://brainly.com/question/10413253
#SPJ1
Help please? I just need an answer. A clear explanation earns brainliest.
the simplified form of expression is: -(x² + 2x - 2)/((x+2)*(x+4))
what is expression ?
In mathematics, an expression is a combination of numbers, variables, operators, and/or functions that represents a mathematical quantity or relationship. Expressions can be simple or complex
In the given question,
To evaluate the expression 1/(x+2) - (x+1)/(x+4), we need to find a common denominator for the two terms. The least common multiple of (x+2) and (x+4) is (x+2)(x+4).
So, we can rewrite the expression as:
(1*(x+4) - (x+1)(x+2))/((x+2)(x+4))
Expanding the brackets, we get:
(x+4 - x² - 3x - 2)/((x+2)*(x+4))
Simplifying the numerator, we get:
(-x² - 2x + 2)/((x+2)*(x+4))
Therefore, the simplified expression is:
-(x² + 2x - 2)/((x+2)*(x+4))
To know more about Expressions , visit:
https://brainly.com/question/14083225
#SPJ1
I need help please I will give brainliest to the best answer...
The value of x in the intersecting chords that extend outside circle is 5
Calculating the value of xFrom the question, we have the following parameters that can be used in our computation:
intersecting chords that extend outside circle
Using the theorem of intersecting chords, we have
4 * (x + 6 + 4) = 6 * (x - 1 + 6)
Evaluate the like terms
So, we have
4 * (x + 10) = 6 * (x + 5)
Using a graphing tool, we have
x = 5
Hence. the value of x is 5
Read more about intersecting chords at
https://brainly.com/question/13950364
#SPJ1
During a flood, there were 6000 acres of land under water. After 2 days, only 3375 acres of land were under water. Assume that the water receded at an exponential rate. Write a function to model this situation that has a B-value of 1.
where t is measured in days, and A(t) represents the amount of flooded land at time t. This function has a B-value of -0.3118.
To model the situation of the flood, we can use an exponential decay function, which represents the decreasing amount of flooded land over time. The function can be written as:
[tex]A(t) = A0 * e^{(-kt)}[/tex]
where A(t) is the amount of flooded land at time t, A0 is the initial amount of flooded land, k is a constant representing the rate of decay, and e is the mathematical constant approximately equal to 2.718.
To determine the value of k, we can use the given information that after 2 days, only 3375 acres of land were under water. Substituting t = 2 and A(t) = 3375 into the equation above, we get:
[tex]3375 = A0 * e^{(-2k)[/tex]
We also know that initially, there were 6000 acres of land under water. Substituting A0 = 6000 into the equation above, we get:
Dividing both sides by 6000, we get:
ln(0.5625) = -2k[tex]ln(0.5625) = -2k[/tex]
Taking the natural logarithm of both sides, we get:
[tex]ln(0.5625) = -2k[/tex]
Solving for k, we get:
[tex]k = -ln(0.5625)/2[/tex]
k ≈ 0.3118
Therefore, the function to model the situation of the flood is:
[tex]A(t) = 6000 * e^{(-0.3118t)}[/tex]
To learn more about function, visit
https://brainly.com/question/12431044
#SPJ1
A container built for transatlantic shipping is constructed in the shape of a right
rectangular prism. Its dimensions are 4 ft by 9.5 ft by 13 ft. If the container is entirely
full and, on average, its contents weigh 0.05 pounds per cubic foot, find the total
weight of the contents. Round your answer to the nearest pound if necessary
Thus, the on average the contents weight for the transatlantic shipping is found as 24.7 pounds.
Explain about the rectangular prism:a solid, three-dimensional object with six rectangular faces.It is a prism due to its uniform cross-section along its whole length.Volume is a unit of measurement for the amount of 3-dimensional space a thing occupies. Cubic units are used to measure volume.Given dimension of rectangular prism
Length l = 4ft
width w = 9.5 ft
height h = 13 ft
Volume of rectangular prism = l*w*h
V = 4*9.5*13
V = 494 ft³
Now,
1 ft³ = 0.05 pounds
So,
weight of 494 ft³ = 494*0.05 pounds
weight of 494 ft³ = 24.7 pounds
Thus, the on average the contents weigh for the transatlantic shipping is found as 24.7 pounds.
know more about the rectangular prism
https://brainly.com/question/24284033
#SPJ1
true or false: a linear programming problem can have an optimal solution that is not a corner point. select one: true false
It is true that a linear programming problem can have an optimal solution that is not a corner point.
How given statement is true? Explain further?In linear programming, the optimal solution represents the point where the objective function is optimized while still satisfying all the constraints.
In some cases, the optimal solution may occur at a corner point of the feasible region, where two or more of the constraints intersect.
However, it is possible for the optimal solution to occur at a point that is not a corner point, but rather lies on an edge or a line segment of the feasible region.
This can occur when the objective function is parallel to one of the constraint lines or when there are redundant constraints that limit the feasible region.
Therefore, it is true that a linear programming problem can have an optimal solution that is not a corner point.
Learn more about linear programming.
brainly.com/question/15417573
#SPJ11
i need help with this quick please help
Answer:
19.5625
Step-by-step explanation:
Add up all of the x's (treating each place where an x is as if it's a number -- eg, there's twonumber 12's)
12+12+15+15+15+15+16+18+20+20+22+25+25+25+29 = 313
Divide by the number of x's
313 / 16 = 19.5625
a p-value a. can be positive or negative. b. is a probability. c. can be smaller than 0 but no larger than 1. d. can be larger than 1 but no smaller than 0. e. can only range in value from -1 to 1.
A p-value is a probability.
A p-value is the probability of obtaining a test statistic as extreme or more extreme.
The observed value, assuming the null hypothesis is true.
It ranges in value from 0 to 1 and represents the strength of evidence against the null hypothesis.
A p-value cannot be negative, as it is a probability and probabilities are always between 0 and 1.
A p-value also cannot be larger than 1, as it represents a probability.
A probability cannot exceed 1.
Finally, a p-value cannot be smaller than 0, as it represents a probability.
A probability cannot be negative.
the correct option is b. is a probability.
For similar questions on P-Value
https://brainly.com/question/13786078
#SPJ11
The solid below is dilated by a scale factor of 1/2. Find the volume of the
solid created upon dilation.
24
26
10
34
Answer: 4080
Step-by-step explanation:
First you have to find the area of the triangle. 24*10 = 240. 240/2 = 120. Then you multiply the area of the triangle and multiply it by 34. 120 * 34 = 4080. This means the answer is 4080
Solve for x to make A||B.
A = x + 12
B = x + 48
X = [?]
Answer:
Step-by-step explanation:= x+48=180 ( linier pair )
= x=180-48
= x=132
= x+12=180 (liner pair)
= x=180-12
= x=168
there are 12 sides and 1 side is 8 so 8 x 12 is 96 so 96 is the perimeter and i need the area
Therefore, the area of the regular dodecagon with a side length of 8 units is approximately 1,843.21 square units.
What is area?In mathematics, area refers to the measure of the amount of space inside a two-dimensional shape or region. It is a measure of the size of a flat surface, and is typically expressed in square units, such as square meters (m²), square centimeters (cm²), or square feet (ft²). The area of a shape can be calculated using various formulas, depending on the type of shape. The concept of area is used in many areas of science and engineering, including physics, geometry, and architecture. It is particularly important in fields such as construction and landscaping, where the amount of material needed to cover a given area is often a key factor in planning and budgeting.
Here,
To find the area of a regular dodecagon, you can use the formula:
Area = (3 * √3 / 2) * s² * n
where s is the length of each side and n is the number of sides.
Substituting s = 8 and n = 12, we get:
Area = (3 * √3 / 2) * 8² * 12
Area = 3 * √3 * 64 * 12
Area = 1,843.21 square units (rounded to two decimal places)
To know more area,
https://brainly.com/question/30106292
#SPJ1
Find the points on the surface z2 = xy +16 closest to the origin. The points on the surface closest to the origin are (Type an ordered triple. Use a comma to separate answers as needed. )
The points on the surface z² = xy + 16 closest to the origin are: (-4,4,0) and (4, -4, 0)
We know that the distance between an arbitrary point on the surface and the origin is d(x, y, z) = √(x² + y² + z²)
Using Lagrange multipliers,
L(x, y, z, λ) = x² + y² + z² + λ(z² - xy - 16)
We have partial derivatives.
[tex]L_x[/tex] = 2x - λy
[tex]L_y[/tex] = 2y - λx
[tex]L_z[/tex] = 2z + 2zλ
[tex]L_\lambda[/tex] = z² - xy - 16
Now we set each partial derivative to zero to find critical points.
[tex]L_x[/tex] = 0
2x - λy = 0
[tex]L_y[/tex] = 0
2y - λx = 0
After solving above equations simultaneously we get (x + y)(x - y) = 0
i.e., x = -y OR x = y
[tex]L_z[/tex] = 0
2z + 2zλ = 0
z = 0 OR λ = 0
Consider [tex]L_\lambda[/tex] = 0
z² - xy - 16 = 0
-xy = 16 ............(as z = 0)
when x = y then -y² = 16 which is not true.
So, consider x = -y
-(-y)y = 16
y² = 16
y = ±4
when y = 4 then we get x = -4
and when y = -4 then we get x = 4
Therefore, the closest points are:(-4,4,0) and (4, -4, 0)
Learn more about the Lagrange multipliers here:
https://brainly.com/question/30776684
#SPJ4
dora drove east at a constant rate of 75 kph. one hour later, tim started driving on the same road at a constant rate of 90 kph. for how long was tim driving, before he caught up to dora? a. 5 hours b. 4 hours c. 3 hours d. 2 hours
Tim was driving for 5 hours before he caught up to Dora.
The answer is (a) 5 hours.
To solve this problem, we can use the formula:
distance = rate × time
Let's denote the time Tim drove as t hours.
Since Dora started driving one hour earlier, her driving time would be (t + 1) hours.
Dora's distance: 75 kph × (t + 1)
Tim's distance: 90 kph × t
Since Tim catches up to Dora, their distances will be equal:
75(t + 1) = 90t
Now we can solve for t:
75t + 75 = 90t
75 = 15t
t = 5.
The answer is (a) 5 hours.
For similar question on distances.
https://brainly.com/question/29657955
#SPJ11
please solve correctly my grade depends on it
Just use the pythagorean theorem to solve the hypotenuse!
(3^2)+(2^2)=x^2
9+4=13^2
[tex]\sqrt{13}[/tex] = [tex]\sqrt{x}[/tex]
[tex]13^{2}[/tex] km
Hope this helps <3
Compare the numbers using <, >, or =. 0. 78 ___ 0. 708 < > =
For the given numbers, 78 < 0. 708
To compare two numbers, we need to look at their values and determine which one is larger or smaller. In this case, we have 78 and 0.708. We can start by comparing their whole number parts, which are 78 and 0, respectively. Since 78 is greater than 0, we know that 78 is a larger number.
But what about the decimal parts of these numbers? To compare them, we need to look at the place value of each digit. The first digit after the decimal point in 78 is 0, and the first digit after the decimal point in 0.708 is 7. Since 7 is greater than 0, we know that 0.708 is a larger number than 0.78 in terms of their decimal parts.
Now that we have compared the whole number parts and decimal parts separately, we can combine the results to determine the final comparison. Since 78 is larger than 0 and 0.708 is larger than 0.78 in terms of their decimal parts, we can conclude that:
78 < 0.708
We use the symbol "<" here because 78 is smaller than 0.708.
To know more about number here
https://brainly.com/question/17429689
#SPJ4
19.
Solve the problem.
2
Find the critical value XR corresponding to a sample size of 5 and a confidence
level of 98%.
(1 point)
O11.143
00.297
13.277
00.484
The critical value of the chi-square distribution corresponding to a sample size of 5 and a confidence level of 98% is given as follows:
0.297 and 13.277.
How to obtain the critical value?To obtain a critical value, we need three parameters, given as follows:
Distribution.Significance level.Degrees of freedom.Then, with the parameters, the critical value is found using a calculator.
The parameters for this problem are given as follows:
Chi-square distribution.1 - 0.98 = 0.02 significance level.5 - 1 = 4 degrees of freedom.Using a chi-square distribution calculator, the critical values are given as follows:
0.297 and 13.277.
More can be learned about the chi-square distribution at https://brainly.com/question/4543358
#SPJ1
(COMPOUND INTEREST)
-$17,525 deposit, interest at 1/2% for 3 years; find interest earned.
20 points reward
Answer:
Step-by-step explanation:
Principal = 17,525. Rate = 1/2% = 0.005 time,t = 3
Interest, I = principal x rate x time
Interest, I = 17525 x 0.005 x 3
Interest, I = $262.875
A net of a rectangular pyramid is shown.
A net of a rectangular pyramid with a base with dimensions of 13 inches by 17 inches. The two larger triangular faces have a height of 11 inches. The smaller triangular face has a height of 12.3 inches.
What is the surface area of the pyramid?
567.9 in2
457.4 in2
346.9 in2
283.95 in2
The surface area of the rectangular pyramid is approximately 567.9 in².
What is rectangular pyramid?
A rectangular pyramid is a type of pyramid that has a rectangular base and four triangular faces that meet at a common vertex. The rectangular base of a rectangular pyramid can be any rectangle, meaning that the length and width can be different. The four triangular faces of a rectangular pyramid are congruent, which means they are the same size and shape. The height of the rectangular pyramid is the distance between the vertex and the center of the base. The surface area of a rectangular pyramid can be calculated by finding the area of each face and adding them together.
To find the surface area of the rectangular pyramid, we need to find the area of each face and add them together.
First, let's find the area of the rectangular base:
Area of base = length x width = 13 in x 17 in = 221 in²
Next, let's find the area of the larger triangular faces:
Area of each larger triangular face = (1/2) x base x height = (1/2) x 17 in x 11 in = 93.5 in²
Total area of both larger triangular faces = 2 x 93.5 in² = 187 in²
Finally, let's find the area of the smaller triangular face:
Area of smaller triangular face = (1/2) x base x height = (1/2) x 13 in x 12.3 in = 79.95 in²
Now, we can find the total surface area of the rectangular pyramid by adding the areas of all the faces:
Total surface area = area of base + area of both larger triangular faces + area of smaller triangular face
Total surface area = 221 in² + 187 in² + 79.95 in²
Total surface area = 488.95 in²
Therefore, the surface area of the rectangular pyramid is approximately 567.9 in².
To know more about rectangular pyramid visit:
https://brainly.com/question/27270944
#SPJ1
a random sample of n equal to 64 scores is selected from a normally distributed population with mu equal to 77 and sigma equal to 21. what is the probability that the sample mean will be less than 79? hint: this is a z-score for a sample.
The probability of the sample mean being less than 79 is 77.64%
In order to solve the given problem we have to take the help of Standard error mean
SEM = ∑/√(n)
here,
∑ = population standard deviation
n = sample size
hence, the z-score can be calculated as
z = ( x' - μ)/σ/√(n)
here,
x' = sample mean
μ = population mean
σ = population standard deviation
n = sample size
adding the values into the formula
SEM = σ / √(n)
= 21/√64
= 2.625
z = (x' - μ)/SEM
= (79-77)/2.625
= 0.76
now, using standard distribution table we find that probability of a z-score is less than 0.77 then converting it into percentage
0.77 x 100
= 77%
The probability of the sample mean being less than 79 is 77.64%
To learn more about probability,
https://brainly.com/question/13604758
#SPJ4
Students made a craft project at camp. They used 2 small pine cone patterns and 1 large pine cone pattern complete the table to find how many patterns were used for the different numbers of projects
There were 100 small pine cone patterns and 50 large pine cone patterns used in the camp.
When 50 students constructed one craft project each using two little pine cone patterns and one giant pine cone pattern, it is the question of how many small and large pine cone patterns were utilised overall:
We can begin by figuring out how many little pine cone patterns were utilized overall to solve this.
Since each student used 2 small pine cone patterns, we can multiply 2 by 50 (the number of students) to get:
2 x 50 = 100 small pine cone patterns used
Similarly, we can calculate the total number of large pine cone patterns used by multiplying the number of students (50) by 1 :
1 x 50 = 50 large pine cone patterns used
Therefore, in total, there were 100 small pine cone patterns and 50 large pine cone patterns used in the camp.
To know more about pine cone patterns, here
brainly.com/question/5057335
#SPJ4
--The complete Question is, If a camp has 50 students and each student made one craft project using 2 small pine cone patterns and 1 large pine cone pattern, how many small and large pine cone patterns were used in total? --
Slope-intercept (0, -2) , (9,1)
Round the number. Write the result as the product of a single digit and a power of 10.
4,241,933,200
Using the graph, determine the coordinates of the x-intercepts of the parabola.
Answer:
x = -5, x = 1
As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).
Step-by-step explanation:
The x-intercepts are the x-values of the points at which the curve crosses the x-axis, so when y = 0.
From inspection of the given graph, we can see that the parabola crosses the x-axis at x = -5 and x = 1.
Therefore, the x-intercepts of the parabola are:
x = -5x = 1As (x, y) coordinates, the x-intercepts are (-5, 0) and (1, 0).
Find the surface area and width of a rectangular prism with height of 6 cm, length of 5 cm, and the
volume of 240 cm³.
Answer:
236 cm^2 and 8 cm
Step-by-step explanation:
width=w
240=6(5)(w)
w=8 cm
area=2[(6)(5)+(6)(8)+(5)(8)]
area=236 cm^2
Which expressions are equivalent to 27^4/3?
Select the three correct answers.
A. 4^3
B. (27^1/3)^4
C. 3^1/4
D. 81
D) 81 is equivalent to 27^(4/3).
The expression 27^4/3 can be simplified using the rule that (a^m)^n = a^(m*n). Therefore, we can write,
27^(4/3) = (3^3)^(4/3)
Using the power of a power rule, we can simplify further,
(3^3)^(4/3) = 3^(3*4/3)
Simplifying the exponent, we get,
3^(4)
To check the other answer choices,
A. 4^3 is not equivalent to 27^4/3.
B. (27^1/3)^4 is equivalent to 27^(4/3), which we already simplified to 3^4. Therefore, this expression is also equivalent to 3^4.
C. 3^1/4 is not equivalent to 27^4/3.
D. 81 is equivalent to 3^(4).
Therefore, the expression 27^4/3 is equivalent to 3^4, which is answer choice D) 81.
To learn more about equivalent here:
https://brainly.com/question/31532746
#SPJ4
erin is playing darts at the adventure arcade. she scores a bullseye 15% of the time, and she is about to throw 5 darts. how likely is it that she will get at least one bullseye?
the likelihood of Erin getting at least one bullseye in 5 throws is 0.5563 or 55.63%.
To calculate the likelihood of Erin getting at least one bullseye, we need to first calculate the probability of her not getting a bullseye in a single throw. Since she scores a bullseye 15% of the time, the probability of her not getting a bullseye in a single throw is 85% (100% - 15%).
Using the probability of not getting a bullseye in a single throw, we can use the following formula to calculate the probability of not getting a bullseye in all 5 throws:
0.85 x 0.85 x 0.85 x 0.85 x 0.85 = 0.4437
Therefore, the probability of Erin not getting a bullseye in all 5 throws is 0.4437 or 44.37%.
To calculate the probability of Erin getting at least one bullseye in 5 throws, we can subtract the probability of her not getting a bullseye in all 5 throws from 1:
1 - 0.4437 = 0.5563
Therefore, the likelihood of Erin getting at least one bullseye in 5 throws is 0.5563 or 55.63%.
learn more about probability
https://brainly.com/question/30034780
#SPJ11
The probability that Erin will get at least one bullseye in her 5 throws at the adventure arcade is approximately 55.63%.
To find the probability that she will get at least one bullseye in 5 throws, we can use the complementary probability.
This means we will first find the probability of her not getting a bullseye in all 5 throws, and then subtract that from 1.
Find the probability of not getting a bullseye (1 - bullseye probability)
1 - 0.15 = 0.85
Calculate the probability of not getting a bullseye in all 5 throws
0.85^5 ≈ 0.4437
Find the complementary probability (probability of at least one bullseye)
1 - 0.4437 ≈ 0.5563
So, the probability that Erin will get at least one bullseye in her 5 throws at the adventure arcade is approximately 55.63%.
for such more question on probability
https://brainly.com/question/13604758
#SPJ11
Find the three trigonometric ratios. If needed, reduce fractions.
what is the answer of this question (please i need help)
Answer:
The answer is B ([tex]x=\frac{6}{5}[/tex])
Step-by-step explanation:
We start with creating labels for the shapes that represent what they value -at first I tried multiplying the 5x by 4 but there wasn't an answer for that.
[tex]5x+4=10[/tex]
First we just simplify,
[tex]5x (-4)=10(-4)[/tex]
[tex]5x=6[/tex]
then divide,
[tex]\frac{5x}{5} =\frac{6}{5}[/tex]
and we end up with:
[tex]x=\frac{6}{5}[/tex]
or
B
Write the functions in standard form:
h(x)=2(x-3)²-9
h(x)=
p(x) = -5(x + 2)² + 15
p(x)=
Answer:
[tex]h(x)=2x^2-12x+9[/tex], [tex]p(x)=-5x^2-20x-5[/tex]
Step-by-step explanation:
To get to the standard form of a quadratic equation, we need to expand and simplify. Recall that standard form is written like so:
[tex]ax^2+bx+c[/tex]
Where a, b, and c are constants.
Let's expand and simplify h(x).
[tex]2(x-3)^2-9=\\2(x^2+9-6x)-9=\\2x^2+18-12x-9=\\2x^2+9-12x=\\2x^2-12x+9[/tex]
Thus, [tex]h(x)=2x^2-12x+9[/tex]
Let's do the same for p(x).
[tex]-5(x+2)^2+15=\\-5(x^2+4+4x)+15=\\-5x^2-20-20x+15=\\-5x^2-5-20x=\\-5x^2-20x-5[/tex]
Thus, [tex]p(x)=-5x^2-20x-5[/tex]