The ammeter in the figure below reads 1.0A. Calculate the magnitude of the currents I1 and I2.

The Ammeter In The Figure Below Reads 1.0A. Calculate The Magnitude Of The Currents I1 And I2.

Answers

Answer 1

Given:

• Ammeter reading, I = 1.0 A

,

• R1 = 2.0 Ω

,

• R2 = 4.0 Ω

,

• R3 = 5.0 Ω

Let's find the magnitude of the currents in I1 and I2.

Apply Kirchhoff's Current Law.

We have:

[tex]I_1+I_2+I_3=0[/tex]

From Kirchoff's junction rule:

[tex]I_1-I_2-I_3=1A[/tex]

Thus, we have:

[tex]\begin{gathered} \frac{1}{R_{eq}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{5} \\ \\ \frac{1}{R_{eq}}=\frac{10+5+4}{20}=\frac{19}{20} \\ \\ R_{eq}=\frac{20}{19}=1.1\text{ ohms} \end{gathered}[/tex]

Apply Ohm's law to find the voltage in the circuit:

[tex]\begin{gathered} V=IR \\ \\ V=1.0*1.1 \\ \\ V=1.1\text{ V} \end{gathered}[/tex]

To find I1, apply Kirchoff's loop law:

[tex][/tex]


Related Questions

Hi can you help me understand how to do this?

Answers

From the information given,

initial velocity of parachute = 198 ft/s

We want to convert 198 ft/s to m/s

Recall,

1 m = 3.3 ft

x m = 198 ft

By crossmultiplying, we have

3.3x = 198

x = 198/3.3

x = 60

Thus,

198 ft/s = 60 m/s

Rate = 60 m/s

To determine the distance that the parachute will fall in 10 seconds, we would apply one of Newton's equations of motion which is expressed as

s = ut + 1/2gt^2

where

s = distance covered

u = initial velocity

t = time

g = acceleration due to gravity and its value is - 9.8m/s^2

From the information given,

t = 10

u = 60

By substituting these values into the formula, we have

s = 60 x 10 - 1/2 x 9.8 x 10^2

s = 600 - 490

s = 110

The distance covered by the parachute in 10s is 110 m

A baseball player pitches a fastball toward home plate at a speed of 41.0 m/s. The batter swings, connects with the ball of mass 195 g, and hits it so that the ball leaves the bat with a speed of 37.0 m/s. Assume that the ball is moving horizontally just before and just after the collision with the bat.A. What is the impulse delivered to the ball by the bat? Enter a positive value if the impulse is in the direction the bat pushes the ball and enter a negative value if the impulse is in the opposite direction the bat pushes the ball. (kg m/s)B. If the bat and ball are in contact for 3.00 ms, what is the magnitude of the average force exerted on the ball by the bat? (kN)

Answers

Given:

Initial velocity, vi = 41.0 m/s

Mass of ball, m = 195 g = 0.195 kg

Final velocity, vf = 37.0 m/s

Assuming the ball is moving horizontally just before and after collision with the bat, let's solve for the following:

• (A). What is the impulse delivered to the ball by the bat?

To find the impulse, apply the change in momentum formula:

[tex]\Delta p=p_f-p_i[/tex]

Where:

pi is the initial momentum = -mvi

pf is the final momentum = mvf

Thus, we have:

[tex]\begin{gathered} \Delta p=mv_f-(-mv_i) \\ \\ \Delta p=mv_f+mv_i \\ \\ \Delta p=m(v_f+v_i) \\ \\ \Delta p=0.195(37.0+41.0) \\ \\ \Delta p=15.21\text{ kg}\cdot\text{ m/s} \end{gathered}[/tex]

Impulse can be said to equal change in momentum.

Therefore, the impulse delivered to the ball by the bat is 15.21 kg.m/s away from the bat.

• (B). If the bat and ball are in contact for 3.00 ms, what is the magnitude of the average force exerted on the ball by the bat?

Apply the formula:

[tex]\text{ Impulse = Force }\ast\text{ time}[/tex]

Rewrite the formula for force:

[tex]\text{ Force=}\frac{impulse}{time}[/tex]

Where:

time = 3.00 m/s

impulse = 15.21 kg.m/s

Hence, we have:

[tex]\begin{gathered} \text{ F=}\frac{15.21}{3} \\ \\ F\text{ = 5.07 kN} \end{gathered}[/tex]

Therefore, the magnitude of the average force exerted on the ball by the bat is 5.07 kN away from the bat.

ANSWER:

(A). 15.21 kg.m/s away from the bat

(B). 5.07 kN.

A car is traveling at a speed of 62mph. The radius of its tires are 17 inches. What is the angular speed of the tires in rad/min? Round to the nearest whole number.

Answers

To find the angular velocity of the car tires, we can use the angular velocity formula:

[tex]v=rw[/tex]

First, we will need to derive from this equation the equation to find angular velocity as this gives us the speed.

[tex]\begin{gathered} v=rw \\ w=\frac{v}{r} \end{gathered}[/tex]

Now, we need to convert our values from mph to m/s.

1 mph = 0.44704 m/s

62 * 0.44704 = 27.71648 m/s = v

Then, we need to find the radius of the tire in meters.

1 inch = 0.0254 meters

17 * 0.0254 = 0.4318 m = r

Now, we will replace these values with the ones in the equation.

[tex]w=\frac{27.71648}{0.4318}=64.18823529[/tex]

Finally, we can round this to be easier to interpret:

The angular speed of the tire is 64.19 radians/minute, or more compactly: 64.19 rad/min.

What is the displacement and distance of the car from t=0s to t=10s

Answers

We are given a graph of distance vs time. To determine the displacement we must add up the total distance covered by the car.

We notice from the graph that the distance from t = 0 and t =2 is:

[tex]d_{0-2}=2m[/tex]

From t = 2 and t = 3 there is no change

The acceleration of an object is ___proportional to the net force and ___ proportional to its mass? Can you tell me which ones it would be from these options?directly, directlydirectly, inverselyinversely, inverselyinversely, directly

Answers

Answer:

the acceleration of an object is directly proportional to the net force and inversely proportional to its mass.

Explanation:

when the net force on an object goes up, so does the acceleration, meaning one increases as the other increases

the acceleration of an object decreases as the mass increases, therefore this relationship is inversely proportional

An unwary football player collides head-on with a padded goalpost while running at 7.5 m/s and comes to a full stop after compressing the padding and his body by 0.27 m. Take the direction of the player’s initial velocity as positive.1.assuming constant acceleration calculate the his acceleration during the collision in meters per second squared.2 how long does the collision last in seconds.

Answers

Answers:

1. a = -104.16 m/s²

2. t = 0.072

Explanation:

To find the acceleration, we will use the following equation:

[tex]v^2_f=v^2_i+2ax[/tex]

where vf is the final velocity, vi is the initial velocity, a is the acceleration and x is the distance. So, replacing vf by 0 m/s, vi by 7.5 m/s, and x by 0.27m, we get:

[tex]\begin{gathered} 0^2=7.5^2+2a(0.27) \\ 0=56.25+0.54a \end{gathered}[/tex]

Then, solving for a, we get:

[tex]\begin{gathered} 0-56.25=56.25+0.54a-56.25 \\ -56.25=0.54a \\ \frac{-56.25}{0.54}=\frac{0.54a}{0.54} \\ -104.16m/s^2=a \end{gathered}[/tex]

Therefore, the acceleration during the collision is -104.16 m/s²

Then, to calculate how long the collision last, we will use the following equation:

[tex]v_f=v_i+at[/tex]

So, replacing the values and solving for t, we get:

[tex]\begin{gathered} 0=7.5-104.16t \\ 104.15t=7.5 \\ t=\frac{7.5}{104.15}=0.072s \end{gathered}[/tex]

Therefore, the collision last 0.072 seconds

In a lightning discharge, 45 C of charge move through a potential difference of 1.0 x108 V in 0.030 s.A. What is the current of the lightning strike?B. How much energy is released by the lightning bolt?

Answers

Given:

Charge, Q = 45 C

Potential difference, V = 1.0 x 10⁸ V

Time, t = 0.030 s

Let's solve for the following:

• (A). What is the current of the lightning strike?

To find the current, apply the formula:

[tex]I=\frac{Q}{t}[/tex]

Where:

I si the current

Q is the charge = 45 C

t is the time = 0.030 s

Thus, we have:

[tex]\begin{gathered} I=\frac{45}{0.030} \\ \\ I=1500\text{ A} \end{gathered}[/tex]

Therefore, the current of the lightning strike is 1500 Amperes.

• (B). How much energy is released by the lightning bolt?

To find the amount of energy released, apply the formula:

[tex]E=V\times Q[/tex]

where:

E is the Energy released

V is the potential difference, V = 1.0 x 10⁸ V

Q is the charge = 45 C

Thus, we have:

[tex]\begin{gathered} E=1.0\times10^8\ast45 \\ \\ E=4.5\times10^9\text{ J} \end{gathered}[/tex]

Therefore, the energy released is 4.5 x 10⁹ Joules.

ANSWER:

(a). 1500 A

(b). 4.5 x 10 J

DQuestion 111 ptsAn object has a mass of 12 kg. Assume the acceleration due to gravity is 10 m/s². If it is lifted to aheight of 20 m, what is its gravitational potential energy?2400 JoulesO 2400 NewtonsO 200 JoulesO 120 Newtons

Answers

Given:

• Mass, m = 12 kg

,

• Acceleration due to gravity, g = 10 m/s²

,

• Height, h = 20 m

Let's find the gravitational potential energy.

To find the gravitational potential energy, apply the formula:

[tex]GPE=m*g*h[/tex]

Where GPE is the gravitational potential energy.

Thus, we have:

[tex]\begin{gathered} GPE=12*10*20 \\ \\ GPE=2400\text{ J} \end{gathered}[/tex]

Therefore, the gravitational potential energy is 2400 Joules.

ANSWERl

A convex spherical mirror has a radius of curvatureof 9 40 cm. A) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 17.5 cmCalculate the size of the imageC) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 10.0cmE) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 2.65cmG) Calculate the location of the image formed by an 7.75mm tall object whose distance from the mirror is 9.60m

Answers

0.We are asked to determine the location of an image formed by an 7.75mm tall object that is located a distance of 17.5 cm from a convex mirror.

First, we will calculate the focal length using the following formula:

[tex]f=-\frac{R}{2}[/tex]

Where:

[tex]\begin{gathered} f=\text{ focal length} \\ R=\text{ radius} \end{gathered}[/tex]

Substituting the values we get:

[tex]f=-\frac{9.40cm}{2}[/tex]

Solving the operations:

[tex]f=-4.7cm[/tex]

Now, we use the following formula:

[tex]\frac{1}{d_o}+\frac{1}{d_i}=\frac{1}{f}[/tex]

Where:

[tex]\begin{gathered} d_0=\text{ distance of the object} \\ d_i=\text{ distance of the image} \end{gathered}[/tex]

Now, we substitute the known values:

[tex]\frac{1}{17.5cm}+\frac{1}{d_i}=-\frac{1}{4.7cm}[/tex]

Now, we solve for the distance of the image. First, we subtract 1/17.5 from both sides:

[tex]\frac{1}{d_i}=-\frac{1}{4.7cm}-\frac{1}{17.5cm}[/tex]

Solving the operation:

[tex]\frac{1}{d_i}=-0.27\frac{1}{cm}[/tex]

Now, we invert both sides:

[tex]d_i=\frac{1}{-0.27}cm=-3.7cm[/tex]

Therefore. the location of the image is -3.7 centimeters.

The other parts are solved using the same procedure.

Part B. To calculate the size of the image we will use the following relationship:

[tex]\frac{h_i}{h_o}=-\frac{d_i}{d_0}[/tex]

Where:

[tex]h_i,h_0=\text{ height of the image and height of the object}[/tex]

Substituting we get:

[tex]\frac{h_i}{7.75mm}=-\frac{-3.7cm}{17.5cm}[/tex]

Solving the operations on the right side:

[tex]\frac{h_i}{7.75mm}=0.21[/tex]

Now, we multiply both sides by 7.75:

[tex]h_i=(7.75mm)(0.21)[/tex]

Solving the operations:

[tex]h_i=1.64mm[/tex]

Therefore, the height of the iamge is 1.64 mm.

a student drops a pebble from the edge of a vertical cliff. the pebble hits the ground 4 s after it was dropped. what is the height of the cliff? a. 20 m b. 40 m c. 60 m d. 80 m

Answers

The object's speed shortly before it lands on the earth is 40 m/s.

What is an example of velocity?

The speed at which something moves in a specific direction is known as its velocity. as the speed of a car driving north on a highway or the pace at which a rocket takes off. Because the velocity vector is scalar, its absolute value magnitude will always equal the motion's speed.

The parameters are as follows: the pebble's time, t = 4 s; the object's velocity right before impact;

The kinematic equation is as follows;

v = in which

v = 0+10 (4)

The object's speed right before impact with the earth is v = 40 m/s2, where g is the acceleration caused by gravity and an is a constant of 10 m/s2. As a result,

the object's final velocity before impact is 40 m/s.

To know more about  kinematic equation visit:-

https://brainly.com/question/28712225

#SPJ13

The highest frequencies humans can hear isabout 20000 Hz.What is the wavelength of sound in airat this frequency?The speed of sound is310 m/s.

Answers

Given

The highest frequency human can hear is f=20000 Hz

Speed of the sound,v=310 m/s

To find

The wavelength

Explanation

We know,

The wavelength is given by

[tex]\begin{gathered} \lambda=\frac{v}{f} \\ \Rightarrow\lambda=\frac{310}{20000} \\ \Rightarrow\lambda=0.0155\text{ m} \end{gathered}[/tex]

Conclusion

The wavelength is 0.0155 m


Name the instrument which is made on the basis of expansion of heat. ​

Answers

The instrument is the Thermometer

Answer:

It is a thermometer and it helps to see the temperature

A plane is traveling with a velocity of 70 miles/hr with a direction angle of 24 degrees. The wind is blowing at 25 miles/hr with a direction angle of 190 degrees. What is the vertical component of the wind velocity? Round your answer to the nearest whole number.

Answers

Wind velocity:

25 m/h with a direction angle of 190°.

Vertical component:

25 sin 190 = -4.34 m/s = - 4 m/s

Two plastic blocks of the same plastic material have the following characteristics:

Block A: Mass 10 g, Volume 25 mL, and
Block B: Mass 20 g, Volume 50 mL.
Which of the statements below is true? (Density of water is 1g/mL at room temperature.)

Group of answer choices

Both blocks will sink equally under water.

Block A will sink deeper under water.

Both blocks will float equally over water.

Block B will float more than Block A over water.

Answers

The true statement, given the data from the question is: Both blocks will float equally over water.

How to determine the true statement

To know which statement is true, we shall obtain the density of each blocks. Details below

For block A:

Mass of block A = 10 gramsVolume of block A = 25 mL Density of block A = ?

Density = mass / volume

Density of block A = 10 / 25

Density of block A = 0.4 g/mL

For block B:

Mass of block B = 20 gramsVolume of block B = 50 mL Density of block B = ?

Density = mass / volume

Density of block B = 20 / 50

Density of block B = 0.4 g/mL

From the above calculation, we can see that the two blocks have the same density.

Thus, we can conclude that the true statement is both blocks will float equally over water.

Learn more about density:

https://brainly.com/question/952755

#SPJ1

Will give brainliest!

A pair of fuzzy dice is hanging by a string from your rearview mirror. While you are accelerating from a stop-light to 28 m/s in 6.0 s, what angle theta does the string make with the vertical?

Answers

For the pair of fuzzy dice hanging by a string from the rearview mirror, while accelerating from a stop-light to 28 m/s in 6.0 s, the string makes an angle of 25.5 degrees with the vertical.

What is an angle?

An angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle.

Parameters given include:

velocity: 28,/s time= 6.0 seconds

a = v/t = 28m/s / 6.0s = 4.667 m/s²

Taking into account the forces acting on the dice...there is a force of gravity acting straight down with a magnitude of mg.

so we have that

Angle = tan-1(a/g)

Angle = tan-1(4.667 / 9.8) =  25.5 degrees.

Learn more about angles at ; https://brainly.com/question/25215131

#SPJ1

In a system of 2 large round objects, R1 and R2 (R1 is larger), what properties will affect the force of gravity between them? (select all that apply)

Answers

According to Newton's Law of Universal Gravitation, if two particles with masses M and m are located a distance r from each other, an attractive force between them appears, and its magnitude is given by:

[tex]F=G\frac{Mm}{r^2}[/tex]

Where G is the gravitational constant:

[tex]G=6.67\times10^{-11}N\frac{m^2}{\operatorname{kg}^2}[/tex]

From the equation, we can see that the properties that affect the force between them are their masses and the distance between them.

Then, the correct choices are:

- Mass of R1

- Mass of R2

- Distance from the center of R1 to the center of R2.

What is the gravitational force between two trucks, each with a mass of 2.0 x 10^4 kg, that are 2.0m apart? (G=6.673 x 10^-11 N•m^2/kg^2)

Answers

Firs we will use the next formula

[tex]F=G\text{ }\frac{m_1\cdot m^{}_2}{r^2}[/tex]

Where G is the gravitational force, m nd m2 are the masses and r is the distance between the masses

In our case

m1=m2= 2.0 x 10^4 kg

r= 2m

G=6.673 x 10^-11 N•m^2/kg^2

We substitute

[tex]F=6.673\times10^{-11}\cdot\frac{2.0x10^4\cdot2.0x10^4}{2^2}=0.0066743N=6.7\times10^{-3}[/tex]

ANSWER

The gravitational force is 0.00667=6.7x10^-3N

(20%) Problem 5: Two identical springs, A and B, each with spring constant k = 54.5 N/m, support an object with a weight W = 11.6 N. Each spring makes an angle of 0 = 20.6 degrees to the vertical, as shown in the diagram. Create an expression for the tension in spring A

Answers

The tension in spring A is T = W/(2cosθ)

What is tension?

Tension is the stretching force in a spring.

How to find the expression for the tension in the spring?

Let

T = the tension in the each spring, W =  weight andθ = angle each spring makes with the vertical

Resolving the tension in each spring vertically, so we can have that

for spring A, the tension is Tcosθ and for spring B, the tension is Tcosθ

Now the vertical component of the tension in each equals the weight. So, we have that

Tcosθ + Tcosθ = W

Adding them together, we have that

2Tcosθ = W

Dividing both sides by 2cosθ, so, we can have that

T = W/2cosθ

Thus, the tension in each spring is T = W/(2cosθ)

So, the tension in spring A is T = W/(2cosθ)

Learn more about tension is spring here:

https://brainly.com/question/29032170

#SPJ1

A student pushes a baseball of m = 0.13 kg down onto the top of a vertical spring that has its lower end fixed to a table, compressing the spring a distance of d = 0.18 meters from its original equilibrium point. The spring constant of the spring is k = 970 N/m. Let the gravitational potential energy be zero at the position of the baseball in the compressed spring.

A. What is the maximum height, h, in meters, that the ball reaches above the equilibrium point?

B. What is the ball’s velocity, in meters per second, at half of the maximum height relative to the equilibrium point?

Answers

The maximum height reached by the baseball above the equilibrium point is 12.14 m.

The ball’s velocity, in meters per second, at half of the maximum height relative to the equilibrium point is 458.8 m/s.

What is the maximum height attained by the ball?

The maximum height reached by the ball is determined as follows:

Data given:

compression of the spring is d = 0.18 m.mass of the baseball is m = 0.13 kgthe spring constant, K = 970 N/m

The gravitational potential energy at the compressed position is zero.

Based on the law of conservation of energy, the total energy of the system is conserved.

Let the final height from the bottom be h

m * g* h = ¹/₂ * K * d²

h = (k * d²) / (2 * m * g)

h = 970 * 0.18² / (2 * 0.13 * 9.81)

h = 12.32 m

Height above the equilibrium point = 12.32 - 0.18

Height above the equilibrium point = 12.14 m

Velocity is calculated1 as follows:

Half of the maximum height relative to the equilibrium point = 12.14/2 + (0.18) = 6.25 m

¹/₂ * m * v² = ¹/₂ * K * d²

m * v² = K * d²

v = √(K * d² / m)

v = √(970 * 6.25² / 0.13)

v = 458.8 m/s

Learn more about spring constant at: https://brainly.com/question/22712638

#SPJ1

A 10.0 cm tall object is placed 6.00 cm in front of a curved mirror and produces an image 2.00 cm behind the mirror. What is the focal length of the mirror?0.667 cm1.50 cm-3.00 cm-0.333 cm

Answers

Given data:

The height of object is h₀=10.0 cm.

The object distance is u=6 cm.

The image distance is v=-2.00 cm.(negative because the image is behind the mirror)

The focal length can be calculated by the mirror's formula as,

[tex]\begin{gathered} \frac{1}{f}=\frac{1}{u}+\frac{1}{v} \\ \frac{1}{f}=\frac{1}{6}+\frac{1}{-2} \\ f=-3.00\text{ cm} \end{gathered}[/tex]

Thus, the focal length of the mirror is -3.00 cm.

When the reflecting wave flips upside-down on a stretchedstring, which of the following is correct?a The stretched string is with a fixed boundaryb The stretched string is with a free boundaryсThe stretched string may have a fixed boundary ora free.d The given information is not enough.e None of the above is correct.

Answers

We are given a reflecting wave on a string. This can be exemplified in the following diagram:

upon leaving her club, the golf ball moved upward to a height above the surrounding trees. is the ke and pe increasing, decreasing, or staying the same?

Answers

ANSWER

PE increases and KE decreases

EXPLANATION

As described, the golf ball is moving and changing its height, like in the following diagram,

By the law of conservation of energy, the total energy when the ball starts moving and during the whole motion until it stops, must be the same. This total energy is the sum of the potential energy and the kinetic energy.

When the club hits the ball, it gives it a certain amount of kinetic energy but no potential energy. As the ball starts going uphill, the potential energy starts to increase, since it depends on the height of the object. Therefore, to maintain the total energy constant, the kinetic energy must decrease.

What sequence of two displacements moves from (5, 5) m to (- 5, - 5) * m while traveling a distance of exactly 20 meters? How does this distance compare to the single displacement that connects the same starting and ending point?

Answers

The two displacements that move from (5,5) to (-5,-5)

(5,5) → ( 5,-5) [10 units down]

(5,-5) → (-5,5) [ 10 units left ]

The single displacement that connects the 2 points is the hypotenuse of the formed triangle where each side is 10 m long.

Apply Pythagorean theorem:

c2 = 10^2+10^2

c^2 = 100 + 100

c^2 = 200

c =√200

c= 14.14

Compared to the simple displacement (14.14) that connects both points, it is greater.

20m > 14.14 m

27. Scientists have observed an increase in global temperatures over the past 100 years. Which phenomena do scientists believe contributes to the increase in temperatures? A. an increase in undersea volcanic activity B. a decrease in the distance between Earth and the Sun C. an increase in certain gases released during the use of fossil fuels D. a decrease in the amount of water on Earth due to overconsumption

Answers

The answer is letter C) An increase in certain gases released during the use of fossil fuels. Although the others do cause an increase in temperature, their scale cannot be compared to the one caused by fossil fuels.

Problem Try to answer the following questions:(a) What is the maximum height above ground reached by the ball?(b) What are the magnitude and the direction of the velocity of the ball just before it hits the ground? Show Your Problem Solving Steps: Show these below:1) Draw a Sketch2) Choose origin, coordinate direction3) Inventory List – What is known?4) Write the kinematics equation(s) and solution of Part (a):5) Write the kinematics equation(s) and solution of Part (b):Problem 3 A small ball is launched at an angle of 30.0 degrees above the horizontal. It reaches a maximum height of 2.5 m with respect to the launch position. Find (a) the initial velocity of the ball when it’s launched and (b) its range, defined as the horizontal distance traveled until it returns to his original height. As always you can ignore air resistance.(a) Initial velocity [Hints: How is v0 related to vx0 and vy0. How can you use the information given to calculate either or both of the components of the initial velocity?](b) Range [Hints: This problem is very similar to today’s Lab Challenge except that for the challenge the ball will land at a different height.]

Answers

3.

[tex]\begin{gathered} \theta=30^{\circ} \\ y_{\max }=2.5m \end{gathered}[/tex]

a)

[tex]\begin{gathered} y_{\max }=\frac{v^2\sin ^2(\theta)}{g} \\ \end{gathered}[/tex]

Solve for v:

[tex]\begin{gathered} v=\sqrt[]{\frac{y_{\max }\cdot g}{\sin ^2(\theta)}} \\ v=98\cdot\frac{m}{s} \end{gathered}[/tex]

b)

[tex]\begin{gathered} r=\frac{v^2}{9}\sin (2\theta) \\ r=\frac{98^2}{9.8}\cdot\sin (2\cdot30) \\ r=\frac{98^2}{9.8}\sin (60) \\ r=848.7m \end{gathered}[/tex]

Look at Figure 13-17 to answer the question.Will the acceleration of the piano be greater in A or in B? Use Newton's second law ofmotion to explain your answer.

Answers

Answer:

Explanation:

Newton's second law states that the applied force is directly proportional to the rate of change of momentum

momentum = mass x velocity

Rate of change in momentum = (final momentum - initial momentum)/time

Rate of change in momentum = m(v - u)/t

where

v is final velocity

u is initial velocity

t is times

Recall,

Acceleration = (v - u)/t

Thus, the equation becomes

Force = ma

This means that as the force increases, the acceleration increases.

Considering the given scenarios,

First piano is pushed by force from the man

For second piano, there is additional force from the woman and the mass of the piano remains the same. Since there is more force, there is more acceleration. Thus,

Acceleration is greater in B

A 50 kW tractor moves at a speed of 2.5 m/s. What is the traction force of the tractor?

Answers

In order to calculate the force, we can use the formula below:

[tex]P=F\cdot v[/tex]

Where P is the power (in W), F is the force (in N) and v is the velocity (in m/s).

So we have:

[tex]\begin{gathered} 50000=F\cdot2.5\\ \\ F=\frac{50000}{2.5}\\ \\ F=20000\text{ N} \end{gathered}[/tex]

Therefore the traction force is 20 kN.

If an airplane is running low on fuel, the pilot may decide to dump unneededweight. As the airplane gets lighter, the engines need less fuel to generate thesame amount of acceleration for flight. The pilot has taken advantage ofNewton's law of motion.A. fourthB. thirdO C. firstD. second

Answers

According to Newton's second law we have that the force is equivalent to the product of the mass and the acceleration:

[tex]F=ma[/tex]

This means that if we decrease the mass "m" of the object the required force is decreased also. Since the force is proportional to the required energy and the energy comes from the fuel consumption this means

If a space ship traveling at a 1000 miles per hour enters and area free of Gravitational forces,it’s engine must run at some minimum level in order to maintain the ships velocity. is this statement true or false

Answers

The given statement is false.

If a spaceship traveling at 1,000 miles per hour enters an area free of gravitational forces, its engine must run at some maximum level in order to maintain the ship’s velocity

Calculate the total capacitance of three capacitors 30µF, 20µF & 12µF connected in parallel across a d.c supply The answer is :Consider that the equivalent capacitance of three capacitors C1, C2 and C3 in parallel is given by:C=C1+C2+C3In this case:C1 = 30µFC2 = 20µFC3 = 12µFReplace the previous values into the formula for C and simplify:C=30μF+20μF+12μF=62μFHence, the total capacitance is 62µFQuestion 5 : Calculate the total charge on the capacitors connected in parallel if the supply voltage is 500V. Sketch a circuit diagram and label this to show how the charges are located

Answers

The circuit diagram is shown below:

From the diagram we notice that the same voltage will flow in every capacitor, this will be helpful later.

We know that this three capacitors are equivalent to a single equivalent capacitor with 62µF capacitance. The charge in this equivalent capacitor is:

[tex]Q_{eq}=(62\times10^{-6})(500)=0.031[/tex]

Now, as we mentioned, the voltage is the same in each capacitor then the charge in each of them is:

[tex]\begin{gathered} Q_1=(30\times10^{-6})(500)=0.015 \\ Q_2=(20\times10^{-6})(500)=0.01 \\ Q_3=(12\times10^{-6})(500)=0.006 \end{gathered}[/tex]

To check if this is correct we need to remember that the charge in the equivalent capacitor is equal to the sum of the charge in each capactior; for this case this conditon is fulfil; therefore we conclude that:

• The charge in the first capacitor is 0.015 C

,

• The charge in the second capacitor is 0.01 C

,

• The charge in the third capacitor is 0.006 C

The diagram with the labels is shown below:

Other Questions
which of the following best describes corporate governance? a. understanding the difference between right and wrong b. what is permitted under the law c. the system of policies, processes, laws, and regulations that affect the way a company is directed and controlled d. the moral quality, fitness, or propriety of a course of action that can injure or benefit people Which shape has an area of b1 + b2 h 2? How many and of which kind of roots does the equation f(x) = x^4 - 2x - 11x + 12x + 36 have?OA. 4 realB. 2 real; 2 complexOC. 4 real; 2 complexD. 3 realReset Selection A number decreased by the sum of the number and three ok so I understand the first 2 steps of solving this but I dont entirely get it........ Joseph II and Catherine the Great wereRoyal BlundersUnenlightened RoyalsEnlightened DepostsConquerors Suppose you are given the function t(x) = x^2 + 8x - 20 Explain how you would graph this function, making sure to include the following information: Coordinate(s) of the solutions/rootscoordinate of the y-intercept location of the line of symmetrycoordinate of the vertex whether the graph opens up or down and how you know Write an email to your father asking some advice choosing a group subject Arthur walks 3 km north, and then turns east and walks 4 km. What is distance traveled and his displacement? ea of the rectangle. 9 mm square millimeters 30 mm I need help with this please its revisiting proportional relationships In the country of United States of Heightlandia, the height measurements of ten-year-old children are approximately normally distributed with a mean of 57 inches, and standard deviation of 7.3 inches.What is the probability that the height of a randomly chosen child is between 49.55 and 73.35 inches? Do not round until you get your your final answer, and then round to 3 decimal places. Drag each tile to the correct location.What types of mixtures are these?peanuts and almonds mixedfood coloring dissolved in watercup of tea and sugartogether in a bowla bucket full of sand and gravelHomogeneous MixtureHeterogeneous Mixture Lisa has to stay under $200.00 while buying new clothes for spring. She has already spent $125.88 and wants to buy some shirts that each cost $20.80. Which of the following inequalities could be used to solve for x, the number of shirts Lisa can buy with the money she has left? henry frick brought in the pinkerton's to help keep the peace and escort strikebreakers to the factory during the homestead strike question 2 options: true false as a financial coach, your client is retiring today with $812365 in retirement savings. you have worked with her to invest that money in a stable account paying a guaranteed rate of 9.1 percent. she will need to make ordinary withdrawals over the expected 135 months of her remaining life. your client is an only child and has no living family members. she has already paid for her funeral and now plans to withdraw her money at the end of every month in equal monthly installments until her account is completely depleted. how much are her monthly payments? What word processing function is most important for working collaboratively? question 5 options: changing line spacing applying styles footnoting reviewing Hi can you help me understand how to do this? Consider the following functions.S(x) = x2 - 4x + 4 and g(x) = x - 2Step 1 of 2: Find ()a). simplify your answer.AnswerKeybo(*)(x) =Subn What is the equation for calculating the electrical force, Fe1, between two charges?