The confidence interval on estimating the heights of the students is given as (5.5, 6.5). Find the sample proportion of the confidence interval.

Answers

Answer 1

Answer:

Step-by-step explanation:


Related Questions

Construct a polar equation for the conic section with the focus at the origin and the following eccentricity and directrix.Conic Eccentricity Directrix1ellipsex= -75e =

Answers

In order to find the polar equation of the ellipse, first let's find the rectangular equation.

Since the directrix is a vertical line, the ellipse is horizontal, and the model equation is:

[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]

Where the center is located at (h, k), the directrix is x = -a/e and the eccentricity is e = c/a.

So, if the eccentricity is e = 1/5 and the directrix is x = -7, we have:

[tex]\begin{gathered} \frac{c}{a}=\frac{1}{5}\rightarrow a=5c\\ \\ -\frac{a}{e}=-7\\ \\ \frac{a}{\frac{c}{a}}=7\\ \\ \frac{a^2}{c}=7\\ \\ \frac{25c^2}{c}=7\\ \\ 25c=7\\ \\ c=\frac{7}{25}\\ \\ a=5\cdot\frac{7}{25}=\frac{7}{5} \end{gathered}[/tex]

Now, let's calculate the value of b with the formula below:

[tex]\begin{gathered} c^2=a^2-b^2\\ \\ \frac{49}{625}=\frac{49}{25}-b^2\\ \\ b^2=\frac{25\cdot49}{625}-\frac{49}{625}\\ \\ b^2=\frac{24\cdot49}{625}\\ \\ b^2=\frac{1176}{625} \end{gathered}[/tex]

Assuming h = 0 and k = 0, the rectangular equation is:

[tex]\frac{x^2}{\frac{49}{25}}+\frac{y^2}{\frac{1176}{625}}=1[/tex]

Now, to convert to polar form, we can do the following steps:

[tex]\begin{gathered} \frac{25x^2}{49}+\frac{625y^2}{1176}=1\\ \\ 600x^2+625y^2=1176\\ \\ 600(r\cos\theta)^2+625(r\sin\theta)^2=1176\\ \\ 600r^2\cos^2\theta+625r^2\sin^2\theta=1176\\ \\ r^2(600\cos^2\theta+625\sin^2\theta)=1176\\ \\ r^2=\frac{1176}{600\cos^2\theta+625\sin^2\theta}\\ \\ r=\sqrt{\frac{1176}{600\cos^2\theta+625\sin^2\theta}}\\ \\ r=\sqrt{\frac{1176}{600+25\sin^2\theta}} \end{gathered}[/tex]

Another way of writing this equation in polar form is:

[tex]r=\frac{ep}{1+\sin^2\theta}[/tex]

Where p is the distance between the focus and the directrix.

Since the foci are located at (±c, 0) = (±7/25, 0) and the directrix is x = -7, the distance is:

[tex]p=7-\frac{7}{25}=\frac{175}{25}-\frac{7}{25}=\frac{168}{25}[/tex]

So the equation is:

[tex]\begin{gathered} r=\frac{\frac{1}{5}\cdot\frac{168}{25}}{1+\sin^2\theta}\\ \\ r=\frac{\frac{168}{125}}{1+\sin^2\theta}\\ \\ r=\frac{1.344}{1+\sin^2\theta} \end{gathered}[/tex]

Michelle can wash dry and fold 5 loads of laundry in 3 1/2 hours. what is the average amount of time it takes Michelle to do one load of laundry

Answers

[tex]\begin{gathered} \text{If she can dry and fold 5 loads in 3 1/2 hous, that is in 3.5 hours, ten per hour she does} \\ \frac{3.5}{5}=0.7 \\ \\ \text{The average time it takes is 0.7 hours!} \\ \\ \text{now, in minutes, it is } \\ 0.7\cdot60=42 \\ \\ \text{ It takes 42 minutes} \end{gathered}[/tex]

Which of the following logarithmic expressions have been evaluated correctly?

Answers

Given:

Logarithmic expressions in options.

Required:

Select correct calculated option.

Explanation:

1). ln 1 = 0

2).

[tex]log_29=3.1699250014[/tex]

3)

[tex]log\frac{1}{100}=-2_[/tex]

4).

[tex]log_3(-1)=NaN[/tex]

5).

[tex]log_5\text{ }\frac{1}{125}=-3[/tex]

Answer:

Hence, option A and E are correct.

what is 9932.8 rounded to the nearest integer

Answers

ANSWER

9933

EXPLANATION

We have the number 9932.8.

We want to round it to the nearest integer.

An integer is a number that can be written without decimal or fraction.

To do that, we follow the following steps:

1. Identify the number after the decimal

2. If the number is greater than or equal to 5, round up to 1 and add to the number before the decimal.

3. If the number is less than 5, round down to 0.

Since the number after the decimal is 8, we therefore have that:

[tex]9932.8\text{ }\approx\text{ 9933}[/tex]

Find the average rate of change of the function in the graph shown below between x=−1 and x=1.

Answers

Answer:

Step-by-step explanation:

The last description actually clarifies the given equation. The equation should be written as: f(x) = 2ˣ +1. The x should be in the exponent's place.

The average rate of change, in other words, is the slope of the curve at certain points. In equation, the slope is equal to Δy/Δx. It means that the slope is the change in the y coordinates over the change in the x coordinate. So, we know the denominator to be: 2-0 = 2. To determine the numerator, we substitute x=0 and x=2 to the original equation to obtain their respective y-coordinate pairs.

f(0)= 2⁰+1 = 2

f(2) = 2² + 1 = 5

Joan uses the function C(x) = 0.11x + 12 to calculate her monthly cost for electricity.• C(x) is the total cost (in dollars).• x is the amount of electricity used (in kilowatt-hours).Which of these statements are true? Select the three that apply.A. Joan's fixed monthly cost for electricity use is $0.11.B. The cost of electricity use increases $0.11 each month.C. If Joan uses no electricity, her total cost for the month is $12.D. Joan pays $12 for every kilowatt-hour of electricity that she uses.E. The initial value represents the maximum cost per month for electricity.F. A graph of the total cost for x ≥ 0 kilowatt-hours of energy used is a straight line.G. The slope of the function C(x) represents the increase in cost for each kilowatt hour used.

Answers

Answer:

The correct statements are:

C. If Joan uses no electricity, her total cost for the month is $12.

F. A graph of the total cost for x ≥ 0 kilowatt-hours of energy used is a straight line.

G. The slope of the function C(x) represents the increase in cost for each kilowatt hour used.

Step-by-step explanation:

Notice that the given function is the equation of a line in the slope-intercept form:

[tex]C(x)=0.11x+12[/tex]

From this interpretation, we'll have that the correct statements are:

C. If Joan uses no electricity, her total cost for the month is $12.

F. A graph of the total cost for x ≥ 0 kilowatt-hours of energy used is a straight line.

G. The slope of the function C(x) represents the increase in cost for each kilowatt hour used.

Solve the inequality 3.5 >b + 1.8. Then graph the solution.

Answers

[tex]3.5\ge b+1.8[/tex]

Collect like terms

[tex]\begin{gathered} 3.5-1.8\ge b \\ 1.7\ge b \\ b\leq\text{ 1.7} \end{gathered}[/tex]

Consider the expression 6+(x+3)^2. Tabulate at least SIX different values of the expression.​

Answers

Considering the expression 6+(x+3)^2. the table of at least SIX different values of the expression is

x               y

0            15

1             22

2            31

3            42

4            55

5            70

How to determine the he table of at least SIX different values of the expression

The table is completed by substituting the values of x in the given expression as follows

6 + (  x + 3 )^2

for x = 0, y = 6 + ( 0 + 3) ^2 = 15

for x = 1, y = 6 + ( 1 + 3) ^2 = 22

for x = 2, y = 6 + ( 2 + 3) ^2 = 31

for x = 3, y = 6 + ( 3 + 3) ^2 = 42

for x = 4, y = 6 + ( 4 + 3) ^2 = 55

for x = 5, y = 6 + ( 5 + 3) ^2 = 70

Learn more about table completion here:

https://brainly.com/question/29232584

#SPJ1

Data Set A has a Choose... interquartile range than Data Set B. This means that the values in Data Set A tend to be Choose... the median.

Answers

The median of the given data set will be 35.

What do we mean by media?In statistics and probability theory, the median is the number that separates the upper and lower half of a population, a probability distribution, or a sample of data. For a data set, it might be referred to as "the middle" value.

So, The variability metrics for each class are listed below:

The further classifications: Class A; Class B;

Range: 30 Range: 30IQR: 12.5 IQR: 20.5MAD: 7.2 MAD: 9.2

Greater variability in the data set is suggested by class B's wider interquartile range and mean absolute deviations.

Set A's median will be:

median = (20 + 32+ 36+ 37 + 50) / 5median = 175 / 5median = 35

Therefore, the median of the given data set will be 35.

To learn more about Median click on the link

brainly.com/question/26151333

#SPJ9

the width of a rectangle is 8 inches less than its length, and the area is 9 square inches. what are the length and width of the rectangle?

Answers

The given situation can be written in an algebraic way:

Say x the width of the rectangle and y its height.

- The width of a rectangle is 8 inches less than its length:

x = y - 8

- The area of the rectangle is 9 square inches:

xy = 9

In order to find the values of y and x, you first replace the expression

x = y - 8 into the expression xy = 9, just as follow:

[tex]\begin{gathered} xy=9 \\ (y-8)y=9 \end{gathered}[/tex]

you apply distribution property, and order the equation in such a way that you obtain the general form of a quadratic equation:

[tex]\begin{gathered} (y-8)y=9 \\ y^2-8y=9 \\ y^2-8y-9=0 \end{gathered}[/tex]

Next, you use the quadratic formula to solve the previous equation for y:

[tex]y=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

here you have a = 1, b = -8 and c = 9. By replacing these values you obtain:

[tex]\begin{gathered} y=\frac{-(-8)\pm\sqrt[]{(-8)^2-4(1)(-9)}}{2(1)}=\frac{8\pm\sqrt[]{64+36}}{2} \\ y=\frac{8\pm\sqrt[]{100}}{2}=\frac{8\pm10}{2}=\frac{8}{2}\pm\frac{10}{2}=4\pm5 \end{gathered}[/tex]

Hence, you have two solutions for y:

y1 = 4 + 5 = 9

y2 = 4 - 5 = -1

You select only the positive solution, because negative lengths do not exist in real life. Hence, you have y = 9.

Finally, you replace the value of y into the expression x = y - 8 to obtain x:

[tex]\begin{gathered} x=y-8 \\ x=9-8 \\ x=1 \end{gathered}[/tex]

Hence, the width and length of the given recgtangle are:

width = 1 in

length = 9 in

Solve fory.y = 6O O2y = 5y = 6.67оо3y = 94Previous

Answers

Here the chords are intersecting outside hence

[tex]\begin{gathered} 2\times(2+10)=3\times(3+y) \\ 2\times12=3(3+y) \\ 2\times4=(3+y) \\ 8=3+y \\ y=8-3 \\ y=5 \end{gathered}[/tex]

Hence the answer is y=5

Equation of the line that passes through points (8,7) and (0,0)

Answers

Equation of the line:

y = mx+b

where:

m= slope

b= y-intercept

First, we have to find the slope:

m = (y2-y1) / (x2-x1)

Since we have:

(x1,y1) = (8,7)

(x2,y2)= (0,0)

Replacing:

m = (0-7)/ (0-8) = -7/-8 = 7/8

Now, that we have the slope:

y = 7/8 x +b

We can place the point (8,7) in the equation and solve for b:

7 = 7/8 (8) +b

7=7 +b

7-7=b

b=0

Since the y-intercept=0

The final equation is:

y= 7/8x

Find the quantities indicated in the picture (Type an integer or decimal rounded to the nearest TENTH as needed.)

Answers

Remember that 3, 4 and 5 is a Pythagorean triple, since:

[tex]3^2+4^2=5^2[/tex]

Since one side of the given right triangle has a length of 3 and the hypotenuse has a length of 5, then, the remaining leg b must have a length of 4.

Therefore:

[tex]b=4[/tex]

The angles A and B can be found using trigonometric identities.

Remember that the sine of an angle equals the quotient of the lengths of the side opposite to it and the hypotenuse of the right triangle.

The side opposite to A has a length of 3 and the length of the side opposite to B is 4. Then:

[tex]\begin{gathered} \sin (A)=\frac{3}{5} \\ \sin (B)=\frac{4}{5} \end{gathered}[/tex]

Use the inverse sine function to find A and B:

[tex]\begin{gathered} \Rightarrow A=\sin ^{-1}(\frac{3}{5})=36.86989765\ldotsº \\ \Rightarrow B=\sin ^{-1}(\frac{4}{5})=53.13010235\ldotsº \end{gathered}[/tex]

Then, to the nearest tenth:

[tex]\begin{gathered} A=36.9º \\ B=53.1º \end{gathered}[/tex]

Therefore, the answers are:

[tex]undefined[/tex]

Allison earned a score of 150 on Exam A that had a mean of 100 and a standard deviation of 25. She is about to take Exam B that has a mean of 200 and a standard deviation of 40. How well must Allison score on Exam B in order to do equivalently well as she did on Exam A? Assume that scores on each exam are normally distributed.

Answers

Answer:

Allison must score 280 on Exam B to do equivalently well as she did on Exam A

Explanations:

Note that:

[tex]\begin{gathered} z-\text{score = }\frac{x-\mu}{\sigma} \\ \text{where }\mu\text{ represents the mean} \\ \sigma\text{ represents the standard deviation} \end{gathered}[/tex][tex]\begin{gathered} \text{For Exam A:} \\ x\text{ = 150} \\ \mu\text{ = 100} \\ \sigma\text{ = 25} \\ z-\text{score = }\frac{150-100}{25} \\ z-\text{score = 2} \end{gathered}[/tex]

Since we want Allison to perform similarly in Exam A and Exam B, their z-scores will be the same

Therefore for exam B:

[tex]\begin{gathered} \mu\text{ = 200} \\ \sigma\text{ = 40} \\ z-\text{score = 2} \\ z-\text{score = }\frac{x-\mu}{\sigma} \\ 2\text{ = }\frac{x-200}{40} \\ 2(40)\text{ = x - 200} \\ 80\text{ = x - 200} \\ 80\text{ + 200 = x} \\ x\text{ = 280} \end{gathered}[/tex]

Allison must score 280 on Exam B to do equivalently well as she did on Exam A

Need help with this review question. I need to know how to find the measurements from the cyclic quadrilateral

Answers

Given a quadrilateral ABCD

A cyclic quadrilateral has all its vertices on the circumference of the circle

Also cyclic quadrilateral

has the opposites angles add up to 180°

then

[tex]\angle a+\angle c=180[/tex][tex]\angle b+\angle d=180[/tex]

then

Option A

A=90

B=90

C=90

D=90

since A+C= 180

and B+D = 180

measures from Option A could come from a cyclic quadrilateral

Option B

A=80

B=80

C=100

D=100

Since A+C = 80+100 = 180

and B+D = 80 + 100 = 180

measures from Option B could come from a cyclic quadrilateral

Option C

A=70

B=110

C=70

D=110

Since A+C=70+70 = 140

And B+D =110+110=220

measures from Option C could NOT come from a cyclic quadrilateral

Option D

A=60

B=50

C=120

D=130

A+C= 60+120 = 180

B+D= 50+130 = 180

measures from Option D could come from a cyclic quadrilateral

Option E

A=50

B=40

C=120

D=150

A+C=50+120= 170

B+D=40+150 = 190

measures from Option E could NOT come from a cyclic quadrilateral

Then correct options are

Options

A,B and D

Which measurement is closest to the shortest distance in miles from Natasha's house to the library?

Answers

Given:

The objective is to find the shortest distance between house and library.

Consider the given triangle as,

Here, A represents the house, B the grocery and C the library.

Since it is a right angled triangle, the distance between the house and the library can be calculated using Pythagoras theorem.

[tex]\text{Hypotenuse}^2=Opposite^2+Adjacent^2[/tex]

Apply the given values in the above formula,

[tex]\begin{gathered} AC^2=17^2+0.9^2 \\ AC^2=289+8.1 \\ AC^2=297.1 \\ AC=\sqrt[]{297.1} \\ AC=17.237\text{ miles} \end{gathered}[/tex]

If Natasha walks through Grocery store,

[tex]\begin{gathered} AC^{\prime}=AB+BC \\ AC^{\prime}=0.9+17 \\ AC^{\prime}=17.9\text{ miles} \end{gathered}[/tex]

By comparing the two ways, ACHence, the hypotenuse distance AC, between house and library is the closest distance.

I really need help on this and I would really appreciate if anyone would want to help me please and thank you.

Answers

Given the equation of the parabola:

[tex]y=x^2+6x-12[/tex]

To find the vertex of the parabola,

we will substitute with the value (-b/2a) into the function y

[tex]\begin{gathered} a=1 \\ b=6 \\ c=-12 \\ \\ x=-\frac{b}{2a}=-\frac{6}{2\cdot1}=-3 \\ y=(-3)^2+6\cdot-3-12=9-18-12=-21 \end{gathered}[/tex]

so, the coordiantes of the vertex :

x = -3

y = -21

P(-3,-5) and Q(1.–3) represent points in a coordinate plane. Find the midpoint of Pe.

Answers

By formula,

Midpoint between two points PQ =

[tex](\frac{x_2+x_1}{2},\text{ }\frac{y_2+y_1}{2})[/tex][tex]\begin{gathered} (\frac{1+-3}{2},\text{ }\frac{-3+\text{ -5}}{2}) \\ \\ \frac{-2}{2},\text{ }\frac{-8}{2}\text{ = (-1,-4)} \\ \\ \end{gathered}[/tex]

So, (-1,-4) (option 3)

Petrolyn motor oil is a combination of natural oil and synthetic oil. It contains 5 liters of natural oil for every 4 liters of synthetic oil. In order to make 531 litersof Petrolyn oll, how many liters of synthetic oil are needed?

Answers

The ratio 4 : 5 means that in every 9 liters of oil, we will have 4L of synthetic oil and 5L of natural oil.

Divide the 531 by 9 to get how many times we have to amplify the ratio:

[tex]\frac{531}{9}=59[/tex]

Multiply the ratio by 59:

[tex]4\colon5\rightarrow(4)(59)\colon(5)(59)\rightarrow236\colon295[/tex]

Meaning that for the 531L of oil, 236L would be synthetic and 295L natural.

Answer: 236 Liters.

please help me work through this, thank you very much!

Answers

Given

[tex]plane-height=650m[/tex]

To Determine: The angle function

Solution

The information can be represented as shown below

From the diagram below

[tex]\begin{gathered} tan\theta=\frac{650}{x} \\ \theta(x)=tan^{-1}(\frac{650}{x}) \end{gathered}[/tex]

evaluate B-( - 1/8) + c where b =2 and c=- 7/4

Answers

Answer: 3/8

Step-by-step explanation:

Given:

[tex]B-(-\frac{1}{8} )+c[/tex]

replace variables with their given values: b = 2 and C = 7/4

[tex]2-(-\frac{1}{8})+\frac{-7}{4}[/tex]

to make subtracting and addition easier, make each number has the same common denominator.

[tex]\frac{16}{8} -(-\frac{1}{8})+(\frac{-14}{8})[/tex]

Finally, solve equation.

***remember that subtracting a negative is the same as just adding and adding by a negative is the same as simply subtracting.

[tex]\frac{16}{8} -(-\frac{1}{8})+(\frac{-14}{8})=\frac{16}{8} +\frac{1}{8}-\frac{14}{8}[/tex]

= 3/8

Answer:

3/8

Step-by-step explanation:

2 - (-1/8) + (-7/4)

= 17/8 - 7/4

= 17/8 + -7/4

= 3/8

The Thompson family and the Kim family each used their sprinklers last summer. The Thompson family's sprinkler was used for 25 hours. The Kim family'ssprinkler was used for 35 hours. There was a combined total output of 1075 L of water. What was the water output rate for each sprinkler if the sum of the tworates was 35 L per hour?Thompson family's sprinkler:Kim family's sprinkler:

Answers

Let x be the rate of water output by the Thompson family and let y be the rate of water output by the Kim family.

We know that the Thompson family sprinkler was used for 25 hours, Kim's family sprinkler was used for 35 hours and that there was a combined total output of 1075 L of water; then we have the equation:

[tex]25x+35y=1075[/tex]

We also know that the combined water output was 35 L per hour, then:

[tex]x+y=35[/tex]

Hence we have the system of equations:

[tex]\begin{gathered} 25x+35y=1075 \\ x+y=35 \end{gathered}[/tex]

To solve this system we solve the second equation for y:

[tex]\begin{gathered} x+y=35 \\ y=35-x \end{gathered}[/tex]

And we plug this value in the first equation and solve for x:

[tex]\begin{gathered} 25x+35(35-x)=1075 \\ 25x+1225-35x=1075 \\ -10x=1075-1225 \\ -10x=-150 \\ x=\frac{-150}{-10} \\ x=15 \end{gathered}[/tex]

Once we have the value of x we plug it in the expression of y:

[tex]\begin{gathered} y=35-15 \\ y=20 \end{gathered}[/tex]

Therefore we have that:

[tex]\begin{gathered} x=15 \\ y=20 \end{gathered}[/tex]

which means:

Thompson family's sprinkler: 15 L per hour

Kim family's sprinkler: 20 L per hour.

In an elementary school, 20% of the teachers teach advanced writing skills. If there are 25writing teachers, how many teachers are there in the school?

Answers

Answer:

125 teachers

Explanation:

We were given that:

20% of teachers teach advanced writing skills = 20/100 = 0.2

Number of writing teachers = 25

The total number of teachers = x

We will obtain the number of teachers in the school as shown below:

[tex]\begin{gathered} \frac{No.of.writing.teachers}{Total.number.of.teachers}\times100\text{\%}=20\text{\%} \\ \frac{25}{x}\times100\text{\%}=20\text{\%} \\ \frac{25\times100\text{\%}}{x}=20\text{\%} \\ \text{Cross multiply, we have:} \\ x\cdot20\text{\% }=25\times100\text{\%} \\ \text{Divide both sides by 20\%, we have:} \\ \frac{x\cdot20\text{\%}}{20\text{\%}}=\frac{25\times100\text{\%}}{20\text{\%}} \\ x=\frac{2500}{20} \\ x=125 \\ \\ \therefore x=125 \end{gathered}[/tex]

Hence, the total number of teachers in the school is 125

A translation is a type of transformation in which a figure is flipped,TrueFalse

Answers

[tex]\begin{gathered} The\text{ given statement is false.} \\ A\text{ translation is a type of transformation which slides the figure.} \end{gathered}[/tex]

Hello Just Want to make sure my answer is correct

Answers

So,

Let's remember that:

The three point postulate states that:

Through any three noncollinear points, there exists exactly one plane.

The Plane-Point Postulate states that:

A plane contains at least three noncollinear points.

As you can notice, the diagram illustrates that:

Given that a plane exists, then, there are three collinear points.

That's the three point postulate.

given AD is congruent to AC and AB is congruent to AE, which could be used to prove?

Answers

Answer

Option B is correct.

SAS | 2 sides and the angle between them in one triangle are congruent to the 2 sides and the angle between them in the other triangle, then the triangles are congruent.

Explanation

We have been told that the two triangles have two sets of sides that are congruent to each other.

And we can see that the angle between those congruent sides for the two triangles is exactly the same for the two triangles.

So, it is easy to see that thes two triangles have 2 sides that are congruent and the angle between these two respective sides are also congruent.

Hope this Helps!!!

Find the percent increase in volume when 1 foot is added to each dimension of the prism. Round your answer to the nearest tenth of a percent.7 ft10 ft86 ft

Answers

Solution

Step 1

The volume of a triangular prism = Cross-sectional area x Length

Step 2

[tex]\begin{gathered} Cross\text{ sectional area = area of the triangle} \\ Base\text{ = 6ft} \\ Height\text{ = 7ft} \\ Cross\text{ sectional area = }\frac{1}{2}\times\text{ 7 }\times\text{ 6 = 21 ft}^2 \\ Volume\text{ = 21 }\times\text{ 10 = 210 ft}^3 \end{gathered}[/tex]

Step 3:

When 1 foot is added to each dimension of the prism.

The new dimensions becomes Base = 7, Height = 8 and length = 11

[tex]\begin{gathered} \text{Cross-sectional area = }\frac{1}{2}\text{ }\times\text{ 7 }\times\text{ 8 = 28 ft}^2 \\ Length\text{ = 11 ft} \\ Volume\text{ = 28 }\times\text{ 11 = 308 ft}^3 \end{gathered}[/tex]

Step 4

Find the percent increase in volume

[tex]\begin{gathered} \text{Percent increase in volume = }\frac{308\text{ - 210}}{210}\text{ }\times\text{ 100\%} \\ \text{= }\frac{98}{210}\text{ }\times100 \\ \text{= 46.7} \end{gathered}[/tex]

Final answer

46.7

Mrs walters had a bag full of candy she wanted to share with 18 students. If she had 335 pieces of candy how many pieces will each student get

Answers

Each student will get 18 pieces of candy. 18x18=324 or 335/18=18remainder,leftovers 11

find the perimeter of the triangle whose vertices are (-10,-3), (2,-3), and (2,2). write the exact answer. do not round.

Answers

We have to calculate the perimeter of a triangle of which we know the vertices.

The perimeter is the sum of the length of the three sides, which can be calculated as the distance between the vertices.

The vertices are V1=(-10,-3), V2=(2,-3), and V3=(2,2).

We then calculate the distance between each of the vertices.

We start with V1 and V2:

[tex]\begin{gathered} d_{12}=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2} \\ d_{12}=\sqrt[]{(-3-(-3))^2+(2-(-10)^2} \\ d_{12}=\sqrt[]{(-3+3)^2+(2+10)^2} \\ d_{12}=\sqrt[]{0^2+12^2} \\ d_{12}=12 \end{gathered}[/tex]

We know calculate the distance between V1 and V3:

[tex]\begin{gathered} d_{13}=\sqrt[]{(y_3-y_1)^2+(x_3-x_1)^2} \\ d_{13}=\sqrt[]{(2-(-3))^2+(2-(-10))^2} \\ d_{13}=\sqrt[]{5^2+12^2} \\ d_{13}=\sqrt[]{25+144} \\ d_{13}=\sqrt[]{169} \\ d_{13}=13 \end{gathered}[/tex]

Finally, we calculate the distance between V1 and V3:

[tex]\begin{gathered} d_{23}=\sqrt[]{(y_3-y_2)^2+(x_3-x_2)^2} \\ d_{23}=\sqrt[]{(2-(-3))^2+(2-2)^2} \\ d_{23}=\sqrt[]{5^2+0^2} \\ d_{23}=5 \end{gathered}[/tex]

Then, the perimeter can be calcualted as:

[tex]\begin{gathered} P=d_{12}+d_{13}+d_{23} \\ P=12+13+5 \\ P=30 \end{gathered}[/tex]

Answer: the perimeter is 30 units.

Glenda borrowed $4,500 at a simple interest rate of 7% for 3 years to
buy a car. How much simple interest did Glenda pay?

Answers

Answer: I = $ 1,102.50

Step-by-step explanation: First, converting R percent to r a decimal

r = R/100 = 7%/100 = 0.07 per year,

then, solving our equation

I = 4500 × 0.07 × 3.5 = 1102.5

I = $ 1,102.50

The simple interest accumulated

on a principal of $ 4,500.00

at a rate of 7% per year

for 3.5 years is $ 1,102.50.

Other Questions
how many moles of electrons are needed to produce 53.5 mol of Zn(s) Given a Figure whose points are A(4, 5), B(2, -1), C(0, 0), D(-4, -1).What would be the image of that figure if it goes under a reflection across the x-axis, what is the coordinateof A?A. A'(-4,-5)B. A'(-4, 5)C. A'(4, 5)D. A'(4,-5) A car travels 273 miles in 6 hours. How muchtime will it take traveling 378 miles Graph the intersection or union, as appropriate, of the solutions of the pair of linear inequalities Find the area of the shapes below. Must show all steps includingformula and units! If needed, round your answer to the nearest tenth. This is a parallelogram The movement of the progress bor may be uneven because questions can be worth more or less including reroj depending on your answeThe following question and answer appears in the advice column of a health magazine."Question: Help! I work out every day but I can't lose the weight around my middle. What should I do?"Answer: Good news! The way to a trim waist is through your stomach. Switching to a diet high in potassium, fiber, andstone fruits will tame that bulky belly by revving up your metabolism and moving fats through your system before they cansettle in your midsection. Our latest cookbook, Belly Be Gone (available through the link below) is packed with 100 recipescreated in consultation with nutritionists. The delicious meals in Belly Be Gone are bad for your bloat but good for you."What is the intended purpose of this article? Fill in the blanks to complete the summary of the play. dad buys a crooked house online. after he dry cleaners use tetrachloroethylene (C2CL4) to dissolve oil and grease because C2CL4 is Represent each sum as a single rational number. -14+(-8/9) due tomorrow pls answer help meeeeeeeeee pleaseee !!!!! value catering uses two measures of activity, jobs and meals, in the cost formulas in its budgets and performance reports. the cost formula for catering supplies is $700 per month plus $85 per job plus $13 per meal. a typical job involves serving a number of meals to guests at a corporate function or at a host's home. the company expected its activity in june to be 26 jobs and 150 meals, but the actual activity was 22 jobs and 147 meals. the actual cost for catering supplies in june was $4,420. the catering supplies in the planning budget for june would be closest to: Find the probability that a dart hits one of the shaded areas. Thewhite figure is a rectangle. Be sure to show all work. Omoro bought 2 2/3 pounds of takis that he is going to bring to school for lunch each day in plastic bags that carry 1/8 of a pound.how many bags can omoro fill completely ? technician a says that a poor engine ground connection can cause electricity to flow through wheel bearings, causing damage. technician b says that overloading may result in premature bearing failure. which technician is correct? a major state university in the south recently raised tuition by 12%. an economics professor at this university asked his students, due to the increase in tuition, how many of you will transfer to another university? one student out of about 300 said that he or she would transfer. based on this information, the price elasticity of demand for education at this university is: Alejandro is carrying a full schedule of advanced courses this semester. He also plays an instrument in the school jazz band and has a part-time job at the grocery store. Alejandro wants to add some physical activity to his schedule, but cant figure out how to fit it in. He asks his good friend Phil for suggestions. Writing: Write a conversation in which Alejandro explains his situation to Phil. Phil should be supportive and offer possible strategies that can help Alejandro add physical activity into his schedule. If Judy completes a puzzle by herself, it takes her 3 hours. Working with Sal, it only takes them 2 hours.A table showing Rate in part per hour, Time in hours, and Part of Project Completed. The first row shows Judy, and has, question mark, 2, and StartFraction 2 Over 3 EndFraction. The second row shows Sal, and has, r, r, and 2 r.What is the missing value from the table that represents Judy's rate?r3 rStartFraction 1 Over 3 EndFraction.3 There are two groups of earthworms on the sidewalk. One group is on a shady, moist area on the sidewalk, and they are moving. The other group is on a very sunny, dry area of the sidewalk, and none of the worms in this group are still living.What question could be asked to investigate the reason for these observations? A. What kind of living environment do earthworms need? B. How do earthworms get on the sidewalk? C. Why do earthworms crawl? D. What kinds of birds eat earthworms? Please provide deep explanation, so i can understand and learn. Thank you Carbon dioxide (co2) is a gaseous compound. calculate the percent composition of this compound. answer using one decimal place. what is the percent by mass of carbon? % what is the percent by mass of oxygen? %