the table below shows the attendance and revenue at theme parks in the us

The Table Below Shows The Attendance And Revenue At Theme Parks In The Us

Answers

Answer 1

Let

y ------> the year

x ----> revenue

so

Plot the given ordered pairs

see the attached figure

(please wait a minute to plot the points)

In the graph the x-coordinate 0 represent year 1990

Find out the equation of the line

take two points

(1990, 5.7) and (2006, 11.5)

Find the slope m

m=(11.5-5.7)/(2006-1990)

m=5.8/16

m=0.3625

Find the equation of the line in slope intercept form

y=mx+b

we have

m=0.3625

point (1990, 5.7)

substitute and solve for b

5.7=(0.3625)(1990)+b

b=-715.675

therefore

y=0.3625x-715.675

The Table Below Shows The Attendance And Revenue At Theme Parks In The Us

Related Questions

quien me puede ayudar a resolver estos ejercicios porfa de ecuaciones

Answers

3x^2 -5x +1 =0

Aplica la formula cuadrática:

[tex]\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2\cdot a}[/tex]

Donde:

a = 3

b= -5

c= 1

Reemplazando:

[tex]\frac{-(-5)\pm\sqrt[]{(-5)^2-4\cdot3\cdot1}}{2\cdot3}[/tex][tex]\frac{5\pm\sqrt[]{25-12}}{6}[/tex][tex]\frac{5\pm\sqrt[]{13}}{6}[/tex]

Positivo:

(5+√13) /6 = 1.43

NEgativo:

(5-√13) /6 = 0.23

second number when the list is sorted from greatest to least

Answers

5.2% = 0.052

1/7 = 0.14

-11/5 = -2.2

From the greatest to least:

[tex]0.14>0.052>-0.8>-2.2[/tex]

The second number is: 5.2%

Answer:

5.2%

The given pair of triangles are similar. Find X and Y.

Answers

Given that the pair of triangles are similar, then their corresponding sides are in proportion, this means that:

[tex]\frac{\text{longer leg of the triangle on the left}}{\text{shorter leg of the triangle on the left}}=\frac{\text{longer leg of the triangle on the right}}{\text{shorter leg of the triangle on the right}}[/tex]

Substituting with the information of the diagram:

[tex]\frac{27}{x}=\frac{x}{9}[/tex]

Cross multiplying:

[tex]\begin{gathered} 27\cdot9=x\cdot x \\ 243=x^2 \\ \sqrt[]{243}=x \\ 15.58\approx x \end{gathered}[/tex]

Considering the triangle on the left, and applying the Pythagorean theorem with c = y (the hypotenuse), a = 27, and b = x (the legs), we get:

[tex]\begin{gathered} c^2=a^2+b^2 \\ y^2=27^2+x^2 \\ y^2=729+243 \\ y^2=972 \\ y=\sqrt[]{972} \\ y\approx31.18 \end{gathered}[/tex]

This is Calculus 1 Problem! MUST SHOW ALL THE JUSTIFICATION!!!

Answers

Given: A surveyor standing 50 feet from the base of a large tree measures the angle of elevation to the top of the tree as 75.8 degrees.

Required: To determine how accurately the angle must be measured if the percent error in estimating the tree's height is less than 5%.

Explanation: To estimate the angle, we will use the trigonometric ratio

[tex]tanx=\frac{h}{50}\text{ ...\lparen1\rparen}[/tex]

where h is the tree's height, and x is the angle of elevation to the top of the tree.

Hence we get

[tex]\begin{gathered} h=50\cdot(tan75.8\degree) \\ h=197.59\text{ feet} \end{gathered}[/tex]

Now differentiating equation 1, we get

[tex]sec^2xdx=\frac{1}{50}dh[/tex]

We can write the above equation as:

[tex]sec^2x\cdot\frac{xdx}{x}=\frac{h}{50}\cdot\frac{dh}{h}\text{ ...\lparen2\rparen}[/tex]

Also, it is given that the error in estimating the tree's height is less than 5%.

So

[tex]\frac{dh}{h}=0.05[/tex]

Also, we need to convert the angle x in radians:

[tex]x=1.32296\text{ rad}[/tex]

Putting these values in equation (2) gives:

[tex]\frac{dx}{x}=\frac{197.59}{50}\cdot\frac{cos^2(1.32296)}{1.32296}\cdot0.05[/tex]

Solving the above equation gives:

[tex]\begin{gathered} \frac{dx}{x}=3.9518\cdot0.04548551012\cdot0.05 \\ =0.008987\text{ radians} \end{gathered}[/tex]

Let

[tex]d\theta\text{ be the error in estimating the angle.}[/tex]

Then,

[tex]\lvert{d\theta}\rvert\leq0.008987\text{ radians}[/tex]

Final Answer:

[tex]\lvert{d\theta}\rvert\leq0.008987\text{ radians}[/tex]

1. Which of the following is NOT a linear function? (1 point ) Oy=* -2 x x Оy - 5 ya 0 2. 3*- y = 4 3.

Answers

hello

to solve this question we need to know or understand the standard form of a linear equation

the standard form of a linear equation is given as

[tex]\begin{gathered} y=mx+c \\ m=\text{slope} \\ c=\text{intercept} \end{gathered}[/tex]

from the options given in the question, only option D does not corresponds with the standard form of a linear equation

[tex]undefined[/tex]

the product of (2-x)and (1-x)is equal to x^2-3x+2

Answers

[tex]\begin{gathered} (2-x)(1-x)=2(1-x)-x(1-x) \\ =(2-2x)+(-x+x^2) \\ =2-3x+x^2 \\ =x^2-3x+2 \\ \end{gathered}[/tex]

So the product of (2-x) and (1-x) is equal to x^2 - 3x + 2

Add or subtract. Simplify. Change the answers to mixed numbers, if possible.

Answers

Answer:

[tex]\begin{gathered} \frac{1}{8} \\ \\ \text{LCD = 8} \end{gathered}[/tex]

Explanation:

Here, we start by finding the lowest common denominator

From what we have, the lowest common denominator is the lowest common multiple of both denominators which is equal to 8

We divide the first denominator by this and multiply the result by its numerator. We take the same step for the second denominator

Mathematically, we have it that:

[tex]\frac{11-10}{8}\text{ = }\frac{1}{8}[/tex]

33Select the correct answer from each drop-down menu.A75°B40°AoIn the figure, line segment AB is parallel to line segment CD.СDdegreesThe measure of angle Cisdegrees, and the measure of angles Dis>254075ResetNext

Answers

Answer:

Angle C = 40 degrees

angle D = 75 degrees

Explanation:

From the information given,

Angle A = 75 degrees

Angle B = 40 degrees

AB is parallel to CD. This means that AD and BC are transversals.

Angles A and D have similar positions but they are opposite sides of the transversal. This means that they are alternate angles. Alternate angles are congruent. Thus,

angle D = 75 degrees

Angles B and C have similar positions but they are opposite sides of the transversal. This means that they are alternate angles. Alternate angles are congruent. Thus,

Angle C = 40 degrees

This graph shows the solution to which inequality?3.2)(-3,-5)O A. ys fx-2B. vfx-2O c. vfx-2OD. yzfx-2

Answers

First, find the equation of the line, given that the points (3,2) and (-3,-6) belong to that line. To do so, use the slope formula and then substitute the value of the slope and the coordinates of a point on the slope-point formula of a line:

[tex]y=m(x-x_0)+y_0[/tex]

The slope of the line, is:

[tex]\begin{gathered} m=\frac{\Delta y}{\Delta x} \\ =\frac{(2)-(-6)}{(3)-(-3)} \\ =\frac{2+6}{3+3} \\ =\frac{8}{6} \\ =\frac{4}{3} \end{gathered}[/tex]

Therefore, the equation of a line (using the point (3,2)) is:

[tex]\begin{gathered} y=\frac{4}{3}(x-3)+2 \\ =\frac{4}{3}x-\frac{4}{3}\times3+2 \\ =\frac{4}{3}x-4+2 \\ =\frac{4}{3}x-2 \end{gathered}[/tex]

Since the colored region on the coordinate plane is placed above the line

y=(4/3)x-2, then the equation of the inequality is:}

[tex]undefined[/tex]

alex was late on his property tax payment to the county. he owed $6,915 and paid the tax 9 months late. the county charges a penalty of 5% simple interest. find the amount of the penalty. (round to the nearest cent as needed)

Answers

We have to use the simple interest formula.

[tex]A=P(1+rt)[/tex]

Replacing the given information, we have.

[tex]\begin{gathered} A=6,915(1+0.05\cdot\frac{9}{12}) \\ A=6,915(1.0375) \\ A=7,174.31 \end{gathered}[/tex]The final amount is $7,174.31, where the penalty is $259.31.

1. Are these ratios equivalent? 8:7 and 4:2

Answers

EXPLANATION

The answer is no, because 8:7 and 4:2 are different relationships.

Can you Convert 840 inches to cm. Use unit analysis to convert the rate.

Answers

we know that

1 in=2.54 cm

so

840 in

Applying proportion

1/2.54=840/x

x=(840*2.54)/1

x=2,133.6 cm

answer is

2,133.6 cmApplying unit rate or unit analysis

we have

2.54 cm/in

Multiply by 840 in

2.54*(840)=2,133.6 cm40/

hello, in the picture you can see a graph and my teacher said that the domain and range would be all real numbers possible. could you please help me because I don't understand why.

Answers

The domain is all the values of the independent variable (in this case, x) for which the function is defined.

In this case, as it is indicated with the arrows in both ends, the function continues for greater and smaller values of x.

As there is no indication that for some value or interval of x the function is not defined (a discontinuity, for example), then it is assumed that the function domain is all the real values.

Example function:

We have the function y=1/(x-2)

We can look if there is some value of x that makes the function not defined.

The only value of x where f(x) is not defined is x=2. When x approximates to 2, the value of the function gets bigger or smaller whether we are approaching from the right or from the left.

Then, the function is not defined for x=2. So, the domain of f(x) is all the real numbers different from x=2.

The domain is, by default, all the real numbers, but we have to exclude all the values of x (or intervals, in some cases like the square roots) for which f(x) is not defined.

20 P1: a For two events, A and B.P(B) -0.5, P(AB) -0.4 andPAB) = 0.4.Calculatei PAB)ii P(A)ili P(AUB)iv P(AB)(8 marks)b Determine, with a reason, whetherevents A and B are independent ornot.(2 marks)probabilityStatistics and

Answers

We have two events A and B.

We know that:

P(B) = 0.5

P(A|B) = 0.4

P(A∩B') = 0.4

i) We have to calculate P(A∩B).

We can relate P(A∩B) with the other probabilities knowing that:

[tex](A\cap B)\cup(A\cap B^{\prime})=A[/tex]

So we can write:

[tex]P(A\cap B)+P(A\cap B^{\prime})=P(A)[/tex]

We know P(A∩B') but we don't know P(A), so this approach is not useful in this case.

We can try with the conditional probability relating P(A∩B) as:

[tex]P(A|B)=\frac{P(A\cap B)}{P(B)}[/tex]

In this case, we can use this to calculate P(A∩B) as:

[tex]\begin{gathered} P(A\cap B)=P(A|B)P(B) \\ P(A\cap B)=0.4*0.5 \\ P(A\cap B)=0.2 \end{gathered}[/tex]

ii) We have to calculate P(A) now.

We can use the first equation we derive to calculate it:

[tex]\begin{gathered} P(A)=P(A\cap B)+P(A\cap B^{\prime}) \\ P(A)=0.2+0.4 \\ P(A)=0.6 \end{gathered}[/tex]

iii) We have to calculate P(A∪B).

We can use the expression:

[tex]\begin{gathered} P(A\cup B)=P(A)+P(B)-P(A\cap B) \\ P(A\cup B)=0.6+0.4-0.2 \\ P(A\cup B)=0.8 \end{gathered}[/tex]

iv. We can now calculate P(A|B') as:

[tex]\begin{gathered} P(A)=P(A|B)+P(A|B^{\prime}) \\ P(A|B^{\prime})=P(A)-P(A|B) \\ P(A|B^{\prime})=0.6-0.4 \\ P(A|B^{\prime})=0.2 \end{gathered}[/tex]

b) We now have to find if A and B are independent events.

To do that we have to verify this conditions:

[tex]\begin{gathered} 1)P(A|B)=P(A) \\ 2)P(B|A)=P(B) \\ 3)P(A\cap B)=P(A)*P(B) \end{gathered}[/tex]

We can check for the first condition, as we already know the value:

[tex]\begin{gathered} P(A|B)=0.4 \\ P(A)=0.6 \\ =>P(A|B)P(A) \end{gathered}[/tex]

Then, the events are not independent.

Answer:

i) P(A∩B) = 0.2

ii) P(A) = 0.6

iii) P(A∪B) = 0.8

iv) P(A|B') = 0.2

b) The events are not independent.

What is 120 percent of 118?

Answers

120 percent of 118 is expressed mathematically as;

120% of 118

120/100 * 118

= 12/10 * 118

= 6/5 * 118

= 708/5

= 141.6%

Hence 120 percent of 118 is 141.6%

When an integer is subtracted from 4 times the next consecutive odd integer, the difference is 23. Find the value of the lesser integer.

Answers

The value of the lesser integer is 5.

According to the question,

We have the following information:

When an integer is subtracted from 4 times the next consecutive odd integer, the difference is 23.

Let's take the lesser integer to be x.

So, the next consecutive odd integer is (x+2).

Now, we have:

4(x+2)-x = 23

4x+8-x = 23

3x+8 =23

3x = 23-8

3x = 15

x = 15/3

(3 was in multiplication on the left hand side. So, it is in the division on the right hand side.)

x = 5

Hence, the lesser integer in the given situation is 5.

To know more about integer here

https://brainly.com/question/15276410

#SPJ1

Select the correct choice below and, if necessary, fill in the answer box within your choice

Answers

x² - 20x + 100

Find two numbers, such that its sum gives -20 and its product gives 100

If such numbers exist, this implies that the polynomial is NOT prime

The two numbers are: -10 and -10

Replace the coefficient of x with the two numbers

x² - 10x -10x + 100

x(x-10) - 10(x - 10)

(x-10)(x-10)

(x-10)²

Therefore, the correct option is A.

x² - 20x + 100 = (x-10)²

Identify the function rule from the values in the table.

Answers

we are given a table of inputs and ouputs of a function. We notice that each output is obtained by multiplying the input by -4:

[tex]\begin{gathered} (-2)(-4)=8 \\ (0)(-4)=0 \\ (1)(-4)=-4 \\ (3)(-4)=-12 \end{gathered}[/tex]

Therefore, the right answer is A.

Mrs. Williams estimates that she will spend $65 onschool supplies. She actually spends $73. What is thepercent error? Round to the nearest tenth ifnecessary.

Answers

We can calculate the percent error as the absolute difference between the predicted value ($65) and the actual value ($73) divided by the actual value and multiplied by 100%.

This can be written as:

[tex]e=\frac{|p-a|}{a}\cdot100\%=\frac{|65-73|}{73}\cdot100\%=\frac{8}{73}\cdot100\%\approx11.0\%[/tex]

Answer: the percent error is approximately 11.0%

3. The number line below represents the solution to which inequality of he 0 1 2 3 4 5 6 7 8 9 10

Answers

let x be the money daniel has. So we get that

[tex]x\ge72+15\rightarrow x\ge87[/tex]

Daniel has at least $87

a carpentar has 16 1/2m of wood he cuts the wood into peices that are each 2 3/4m long PLSSSSS HURRY!!!!!!!!​

Answers

The most appropriate choice for fraction will be given by

6 pieces of wood are cut by the carpenter

What is a fraction?

Suppose there is a collection of objects and some part of the objects are taken from the collection. The part which has been taken is called fraction. In other words, part of a whole is called fraction.

The upper part of the fraction is called numerator and the lower part of the fraction is called denominator.

Total length of wood = [tex]16\frac{1}{2}[/tex] m

                                   = [tex]\frac{33}{2}[/tex] m

Length of one piece of a wood = [tex]2\frac{3}{4}[/tex] m = [tex]\frac{11}{4}[/tex]

Number of pieces of wood cut by carpenter =  [tex]\frac{33}{2}[/tex] ÷ [tex]\frac{11}{4}[/tex]

                                                                        = [tex]\frac{33}{2}[/tex] [tex]\times \frac{4}{11}[/tex]

                                                                       = 6

6 pieces of wood are cut by the carpenter

To learn more about fraction, refer to the link -

brainly.com/question/17220365

#SPJ9

What is the answer to 6x + =5

Answers

Answer:

x = 5/6 or x = 0.83

Step-by-step explanation:

6x + =5

6x + 0 = 5

6x = 5

6x/6 = 5/6

x = 5/6 or x = 0.83

The function, f. is drawn on the accompanying set of axes. On the same set of axes, sketch the graph of f-?, the inverse of f

Answers

We are given the following graph:

The inverse of the graph is shown below:

Which of the following expressions is equivalent to 2^4x − 5? the quantity 8 to the power of x end quantity over 10 the quantity 4 to the power of x end quantity over 5 the quantity 16 to the power of x end quantity over 32 the quantity 1 to the power of x end quantity over 32

Answers

The equivalent expression for the given exponent equation is 16^x/32

Given,

The exponent equation; 2^4x - 5

We have to find the expressions which is equivalent to 2^4x - 5

Exponential equations are inverse of logarithmic equations.

This can also be expressed as;

2^(4x-5) = 2^4x/2^5

2^4x-5 =16^x/2^5

2^4x-4 = 16^x/32

Hence the equivalent expression is 16^x/32

Learn more about equivalent expressions here;

https://brainly.com/question/28292075

#SPJ1

Answer:it's not 4^x/5

Step-by-step explanation:

20. Write the slope-intercept form of the line described in the followingPerpendicular to -2+3y=-15and passing through (2, -8)

Answers

The equation of a line in Slope-Intercept form is:

[tex]y=mx+b[/tex]

Where "m" is the slope and "b" is the y-intercept.

Solve for "y" from the equation given in the exercise in order to write it in Slope-Intercept form:

[tex]\begin{gathered} -2+3y=-15 \\ 3y=-15+2 \\ y=-\frac{13}{2} \end{gathered}[/tex]

You can notice that the equation has this form:

[tex]y=b[/tex]

Where "b" is the y-intercept.

Then, it's a horizontal line, which means that its slope is:

[tex]m=0[/tex]

Since it is a horizontal line, the lines perpendicular to that line is a vertical line, whose slope is undefined and whose equation is:

[tex]x=k[/tex]

Where "k" is the x-intercept.

Knowing that the x-coordinate of any point on a vertical line is always the same, and knowing that this line passes through this point:

[tex]\mleft(2,-8\mright)[/tex]

You can determine that the equation of the line is:

[tex]x=2[/tex]

Find the slope of every line that is parallel to the graph of the equation

Answers

The slope should be - 1/2

The table below shows the average annual cost of health insurance for a single individual, from 1999 to 2019, according to the Kaiser Family Foundation.YearCost1999$2,1962000$2,4712001$2,6892002$3,0832003$3,3832004$3,6952005$4,0242006$4,2422007$4,4792008$4,7042009$4,8242010$5,0492011 $5,4292012$5,6152013$5,8842014$6,0252015$6,2512016$6,1962017$6,4352017$6,8962019$7,186(a) Using only the data from the first and last years, build a linear model to describe the cost of individual health insurance from 1999 onward. Use t to represent years after 1999 (treating 1999 as year 0).Pt = (b) Using this linear model, predict the cost of insurance in 2030.$ (c) = According to this model, when do you expect the cost of individual insurance to reach $12,000? Give your answer as a calendar year (ex: 2020)..

Answers

The given data plot will look thus:

a) Building a model using just the 1999 and 2019 years:

[tex]\begin{gathered} 1999\rightarrow0\rightarrow2196 \\ 2019\rightarrow20\rightarrow7186 \\ \text{Havng} \\ x_1=0,y_1=2196 \\ x_2=20,y_2=7186 \\ \frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}_{} \\ \text{The model will be:} \\ P_t=249.5t+2196 \end{gathered}[/tex]

b) The cost of insurance in 2030

[tex]\begin{gathered} P_t=249.5t+2196 \\ t=2030-1999=31 \\ \text{The cost of insurance in 2030 therefore will be:} \\ =249.5(31)+2196 \\ =7734.5+2196 \\ =\text{ \$9930.5} \end{gathered}[/tex]

c) When do we expect the cost to reach $12,000

[tex]\begin{gathered} P_t=249.5t+2196 \\ 12,000=249.5t+2196 \\ 12000-2196=249.5t \\ 9804=249.5t \\ \frac{9804}{249.5}=\frac{249.5t}{249.5} \\ 39.2946=t \\ Since\text{ t = year -1999} \\ 39.2946+1999=\text{year} \\ 2038.2946=\text{year} \\ Since\text{ we are to give our answer as an exact year} \\ \text{The year will be }2039. \end{gathered}[/tex]

the price of a gallon of unleaded gas has risen to $2.92 today. yesterday's price was $2.85. find the percentage increase. round to the nearest 10th of a percent

Answers

Given:

[tex]\begin{gathered} P_{\text{today}}=2.92,P_{today}=Price\text{ of a gallon of unleaded gas today} \\ P_{\text{yesterday}}=2.85, \\ P_{yesterday}=Price\text{ of a gallon of unleaded gas today} \end{gathered}[/tex]

To Determine: The percentage increase round to the nearest 1oth of a percent

The formula for percentage increase is given below:

[tex]\begin{gathered} P_{in\text{crease}}=\frac{increase}{P_{\text{initial}}}\times100\% \\ In\text{crease}=P_{final}-P_{in\text{itial}} \end{gathered}[/tex]

Substitute the given into the formula

[tex]\begin{gathered} P_{\text{yesterday}}=P_{i\text{nitial}}=2.85 \\ P_{\text{today}}=P_{\text{final}}=2.92 \\ \text{Increase}=2.92-2.85=0.07 \end{gathered}[/tex][tex]\begin{gathered} P_{in\text{crease}}=\frac{increase}{P_{\text{initial}}}\times100\% \\ P_{in\text{crease}}=\frac{0.07}{2.85}\times100\% \\ P_{in\text{crease}}=0.02456\times100\% \\ P_{in\text{crease}}=2.456\% \\ P_{in\text{crease}}\approx2.5\%(nearest\text{ 10th)} \end{gathered}[/tex]

Hence, the percentage increase to the nearest 10th of a percent is 2.5%

Hunter has $300 in a savings account. The interest rate is 8%, compounded annually.To the nearest cent, how much will he have in 3 years?

Answers

EXPLANATION

If Hunter has $300 in savings and the interest rate is 8%, compounded annualy, we can apply the following equation:

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

Where, P=Principal=300, r=rate (in decimal form) = 8/100 = 0.08, n=number of compounded times = 1 and t = time = 3

Substituting terms:

[tex]A=300\cdot(1+\frac{0.08}{1})^{1\cdot3}[/tex]

Adding numbers:

[tex]A=300\cdot(1.08)^3[/tex]

Computing the powers:

[tex]A=300\cdot1.26[/tex]

Multiplying numbers:

[tex]A=378[/tex]

In conclusion, there will be 378.00 in three years

points E,D and H are the midpoints of the sides of TUV, UV=100,TV=126,and HD=100, find HE.

Answers

Since the triangles are similar there exists correspondance in the angles, so in order to solve this you just have to clear the function:

[tex]\begin{gathered} \frac{VD}{VU}=\frac{HD}{TU} \\ \end{gathered}[/tex]

Since D is the midpoint of VU, VD=50

[tex]\begin{gathered} \frac{50}{100}=\frac{100}{TU} \\ 50\times TU=100\times100 \\ TU=200 \end{gathered}[/tex]

then

[tex]\begin{gathered} \frac{HE}{UV}=\frac{HD}{TU} \\ \frac{HE}{100}=\frac{100}{200} \\ HE=\frac{100}{200}\times100 \\ HE=50 \end{gathered}[/tex]

Other Questions
The boxplot displays the arm spans for 44 students.Which of the following is not a true statement?There are no outliers in this distribution.The shape of the boxplot is fairly symmetric.The range of the distribution is around 60 cm.The center of the distribution is around 180 cm. Why is Jack and the Beanstalk a good story? Function f is defined by f(x) = 2x 7 and g is defined by g(x) = 5* 9. if 116,500 pounds of raw materials are needed to meet production in august, what is the estimated raw materials inventory balance at the end of july? 2.Spiders have a bad reputation, despite being largely harmless and playing important roles invarious ecosystems. Can you think of any other animals people fear that are relatively harmlessand important to our planet? beth is completing high school, and she is unsure of her career goals. she does know that she is a good problem solver, is very creative, and works easily with complex equipment. which career is beth best suited for? A ball is shot 58m/s at 40 degrees to the ground. What is the magnitude of the vertical component of the velocity of the plane? the nurse and an unlicensed assistive personnel (uap) are transferring a client from a bed onto a stretcher. prior to the move, where should the nurse position the stretcher? find the volume of a cone with a height of 100 feet and a radius of its base 100 feet use 3.14 for pi Write the sequence {15, 31, 47, 63...} as a function A. A(n) = 16(n-1)B. A(n) = 15 + 16nC. A(n) = 15 + 16(n-1)D. 16n Which of the following is an element located in group 17?a) Neb) Lic) Mnd) Br Khalil has 2 1/2 hours to finish 3 assignments if he divides his time evenly , how many hours can he give to each 1. How much less is the area of a rectangular field 60 by 20 meters than that of a square field with the same perimeter? which antibiotic specifically inserts on sites of the 30s subunit of prokaryotic ribosomes causing the misreading of mrna and thus inhibit translation? true or false: in wto rules, the escape clause allows for the imposition of restrictions on unfairly traded imports that cause or threaten harm to domestic industry. Given the image Q(33, 36) and preimage Q(11, 12), by what scale factor was the point dilated?223241/3 What is the standard form of the complex number that point A represents? Competition between Japan and China in Korea due to Japan extending its influence in Korea Need help with this.. tutors have been a great help You had $21 to spend on five notebooks after buying them u had $6 dollars how much did each notebook cost.