What is the energy; in J, of light that must be absorbed by a hydrogen atom to transition an electron from n = 3 t0 n = 5? Submit an answer to three signficant figures

Answers

Answer 1

The energy of light that must be absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 is approximately: 1.55 × 10⁻¹⁹ J.

To calculate the energy of light, in Joules, that must be absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5, you can follow these steps:

1. Use the Rydberg formula for energy change:
ΔE = E_final - E_initial = (-13.6 eV / n_final²) - (-13.6 eV / n_initial²)

2. Plug in the given values of n_initial = 3 and n_final = 5:
ΔE = (-13.6 eV / 5²) - (-13.6 eV / 3²)

3. Calculate the energy change:
ΔE = (-13.6 eV / 25) - (-13.6 eV / 9) = -0.544 eV - (-1.511 eV) = 0.967 eV

4. Convert the energy change from electron volts (eV) to Joules (J) using the conversion factor 1 eV = 1.602 × 10⁻¹⁹ J:
ΔE = 0.967 eV × (1.602 × 10⁻¹⁹ J/eV) = 1.549 × 10⁻¹⁹ J

5. Round the answer to three significant figures:
ΔE ≈ 1.55 × 10⁻¹⁹ J

To know more about "Electron" refer here:

https://brainly.com/question/13998346#

#SPJ11


Related Questions

An object has a mass of 25 grams and has a length of 5 cm, a width of 1 cm, and a height of 5 cm, what is it's density

Answers

An object has a mass of 25 grams and has a length of 5 cm, a width of 1 cm, and a height of 5 cm, then its density is 1000 kg/m³.

Density is the ratio of mass to volume. it tells how much mass a body is having for its unit volume. for example egg yolk has 1027kg/m³ of density, means if we collect numbers of egg yolk and keep it in a container having volume 1 m³ then total amount of mass it is having will be 1027kg. Density is a scalar quantity.

In this problem,

Given,

mass m = 25 g = 0.025 kg

length l = 5 cm = 0.05 m

width w = 1 cm = 0.01 m

height h = 5 cm = 0.05 m

The volume of the object = hlw = 0.05×0.05×0.01 = 25 × 10⁻⁶ m³

Density = mass/ volume = 0.025 kg / 25 × 10⁻⁶ m³

Density = mass/ volume = 1000 kg/m³

To know more about density :

https://brainly.com/question/29775886

#SPJ1.

How can most meteors be cometary if most, perhaps all, meteorites are asteroidal?

Answers

The majority of meteors are cometary, coming from cometary debris, whereas the majority of meteorites are asteroidal, coming from the asteroid belt between Mars and Jupiter.

A comet's tail is made of gas and dust that is released when it approaches the sun. Comets are composed of ice, dust, and rocky material. The comet leaves a trail of debris as it travels around the sun. A meteor shower is produced as Earth travels through this debris trail because the particles burn up in the atmosphere. But not all meteors originate from comets. Some came from fragments of asteroids that crashed and split apart. The fragments may then impact the planet as meteorites. Due to the nature of the material that falls to Earth, most meteorites are asteroidal in origin while the majority of meteors are cometary in origin.

learn more about asteroidal here:

https://brainly.com/question/18726579

#SPJ11

a wave front approaching a plane mirror is convex as seen from thr mirror. after reflection occurs, as seen from the mirror, the wave fron appears:
a) plane
b) concave
c) convex

Answers

After reflection occurs from a plane mirror, the wave front appears to be plane.

Two cars (A and B) of equal mass have an elastic collision. Prior to the collision, car A is moving at 20 m/s in the +x-direction, and car B is moving at 10 m/s in the -x-direction. Assuming that both cars continue moving along the x-axis after the collision, what will be the velocities of each car after the collision?

Answers

Answer: The velocity of each car after collision is 10m/s an -20m/s

Explanation:

using conservation of mommentum

m1u1+m2u2=m1v1+m2v2       but m1=m2

20m-10m =mv1+mv2

10=v1+v2......................................eqn1

using conservation of eenergy

1/2mu1^2 + 1/2mu2^2 = 1/2mv1^2 +1/2mv2^2

u1^2+u2^2=v1^2 +v2^2

(20)^2 + (-10)^2=v1^2+V2^2

400+100 = V1^2+V2^2

500 = V1^2+V2^2............................EQN2

using those two equations we can find the value of v1 and v2

Light at 543 nm from a helium–neon laser shines on a pair of parallel slits separated by 1. 57 ✕ 10−5 m and an interference pattern is observed on a screen 1. 70 m from the plane of the slits. 1. Find angle from central maximum to first bright fringe

2. At what angle from central maximum does the second dark fringe appear?

3. Find the distance (in m) from the central maximum to the first bright fringe

Answers

(A) The distance from the central maximum to the first bright fringe would be 2.01°(B) the angle from the central maximum to the second dark fringe is  3.01° .(C) The distance would be 0.666meter from the central maximum to the first bright fringe.

Here, can be  written as,

(A) Position of nth bright fringes is,

y = nDλ/d

D = distance between slits and screen

d= separation of slits

λ = wavelength

And here n = 1 for first bright fringe

y = Dλ/d

tanθ = y/D = λ /d

θ = tan⁻¹(λ/d)

θ = tan ⁻¹(543× 10⁻⁹m/1.55×10⁻⁵m)

θ = 2.01°

At 2.01° angle from central maximum to first bright fringe.

(B) For dark fringe

y = (n+1/2)(Dλ/d)

And for second dark fringe n=1

y=  (1+1/2)(Dλ/d)

tanθ = y/D

tanθ = 3/2 (543× 10⁻⁹m/1.55×10⁻⁵m)

θ = 3.01°

At  3.01° angle from central maximum does the second dark fringe appear.

(C) From part A may write as,

y = Dλ/d

y = (1.9m)(543× 10⁻⁹m/1.55×10⁻⁵m)

y = 0.666meter

Thus,  the distance  0.666meter from the central maximum to the first bright fringe.

The complete questions is,

Light at 543 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.55 ✕ 10−5 m and an interference pattern is observed on a screen 1.90 m from the plane of the slits. (a)Find the angle (in degrees) from the central maximum to the first bright fringe.

(b) At what angle (in degrees) from the central maximum does the second dark fringe appear? (c) Find the distance (in m) from the central maximum to the first bright fringe.

To know more about fringe

https://brainly.com/question/20324380

#SPJ1

in prob. 9.54, if the cable were given an additional full wrap around the pulley at c and if the worker can apply a force of 50 lb to the cable, determine the largest weight that maybe be lifted at d

Answers

If the cable were given an additional full wrap around the pulley at c and the worker can apply a force of 50 lb to the cable, this would effectively double the tension in the cable. Therefore, the tension in the cable would be 2(400 lb) = 800 lb.

To determine the largest weight that may be lifted at d, we need to consider the forces acting on the system. There are two tension forces acting on the cable, one pulling up from d and one pulling down from the weight at c. There is also the weight of the load pulling down.

Using the principle of equilibrium, we can set the sum of the forces in the vertical direction equal to zero. This gives us:

800 lb - Td - W = 0

where Td is the tension force pulling up from d and W is the weight of the load.

Solving for W, we get:

W = 800 lb - Td

To determine the largest weight that can be lifted, we need to find the maximum tension force that the worker can apply to the cable. Since the worker can apply a force of 50 lb, the maximum tension force would be 50 lb multiplied by the number of cables wraps around the pulley at c. Since there is now one additional wrap, the maximum tension force would be:

50 lb x 2 = 100 lb

Therefore, the largest weight that can be lifted is:

W = 800 lb - Td = 800 lb - 100 lb = 700 lb

So the largest weight that can be lifted at d is 700 lb.

Learn more about  tension here:

https://brainly.com/question/11348644

#SPJ11

The Space Shuttle is flying at 2.0 km/hr and lands on the runway. It then slows down to 0.5 km/hr. If this takes
0.25hrs, what is your acceleration?

Answers

Answer: acceleration = -1.68 m/s^2

Explanation: First, you need to convert the speeds to meters per second (m/s) since acceleration is typically measured in m/s^2.

2.0 km/hr = 0.56 m/s

0.5 km/hr = 0.14 m/s

Next, you use the formula for acceleration: acceleration = (final velocity - initial velocity) / time

Plugging in the values, we get: acceleration = (0.14 m/s - 0.56 m/s) / 0.25 hr

acceleration = (-0.42 m/s) / 0.25 hr

acceleration = -1.68 m/s^2

150mg/dL or 0.15g/dL BAC is equal to how many drinks?

Answers

The blood alcohol concentration (BAC) is a measure of the amount of alcohol in a person's bloodstream. A BAC of 0.15g/dL or 150mg/dL indicates a significant level of intoxication. It's important to note that the number of drinks needed to reach this BAC can vary depending on several factors, such as a person's weight, gender, and the rate at which they consume alcohol.

It's difficult to provide an exact number of drinks that would result in a BAC of 150mg/dL or 0.15g/dL, as individual tolerance and metabolism can differ greatly. However, a general guideline is that consuming about 4-5 standard alcoholic drinks within an hour for a 160-pound male, or 3-4 drinks for a 120-pound female, could potentially lead to this level of intoxication.

Keep in mind that these figures are only approximate and that everyone's body processes alcohol differently. It's always best to drink responsibly and avoid driving or operating machinery while under the influence of alcohol.

brainly.com/question/28420811

#SPJ11

The largest planet in the solar system (by mass) is
a. Earth
b. Mars
c. Venus
d. Jupiter
e. Neptune

Answers

Answer:

D. Jupiter

Explanation:

The largest planet in the solar system is Jupiter (by Mass)

Braydon is halfway down a small hill on his bike. Which best describes his potential and kinetic energy?

A) He has mostly kinetic energy.
B) He has mostly potential energy.
C) His kinetic energy is increasing.
D) His potential energy is increasing.

Pls help!

Answers

Answer:

Explanation:

kinetic energyu inmcrease

Two trains sound identical horns of frequency 410 Hz. One train is stationary. The other is moving away from an observer, who heats a beat frequency of 35 Hz. How fast is the moving train going?

Answers

The speed of the moving train is approximately 33.5 m/s.

The beat frequency is given by the difference in frequency between the two horns, which is equal to the Doppler shift in frequency due to the motion of the moving train. Using the formula for the Doppler effect, we can solve for the speed of the train:

[tex]f_b = f_s\dfrac{(v + v_o)}{(v + v_s)}[/tex]

where [tex]f_b[/tex] is the beat frequency, [tex]f_s[/tex] is the horn frequency, v is the speed of sound, [tex]v_o[/tex] is the observer's speed, and [tex]v_s[/tex] is the speed of the source.

We know that [tex]f_s[/tex] = 410 Hz and [tex]f_b[/tex] = 35 Hz. The speed of sound in air at standard temperature and pressure is approximately 343 m/s. Since the observer is stationary, [tex]v_o[/tex] = 0.

Solving for [tex]v_s[/tex], we get:

[tex]v_s = \dfrac{(f_s + f_b)}{f_s - 1} \times v[/tex]

[tex]v_s[/tex] = ((410 Hz + 35 Hz) / 410 Hz - 1) * 343 m/s

[tex]v_s[/tex] = 33.5 m/s

To know more about frequency, here

brainly.com/question/29664449

#SPJ1

What is the major source of meteor shower meteoroids?

Answers

Answer:

Most meteoroids are small fragments of rock created by asteroid collisions. Comets also create meteoroids as they orbit the sun and shed dust and debris. When a meteoroid enters Earth's upper atmosphere, it heats up due to friction from the air.

Explanation:

Hope this helped! Please mark me brainliest!

Answer:

Most meteoroids are small fragments of rock created by asteroid collisions. Comets also create meteoroids as they orbit the sun and shed dust and debris. When a meteoroid enters Earth's upper atmosphere, it heats up due to friction from the air.

Explanation:

If a large, positively charged. conducting sphere is touched by a small, negatively charged, conducting sphere, what can be said about the following?a. the potentials of the two spheresb. the charges on the two spheres

Answers

When a large, positively charged conducting sphere is touched by a small, negatively charged conducting sphere,

a. charges flow until both spheres have the same potential.

b. The larger sphere gains some negative charge from the smaller sphere, while the smaller sphere loses some of its negative charges.

When a large, positively charged conducting sphere is touched by a small, negatively charged conducting sphere, charges flow from the smaller sphere to the larger sphere until both reach the same potential.

The potential is the measure of electrical potential energy per unit charge, so when the two spheres have the same potential, they have equal electrical potential energy per unit charge.

Regarding the charges on the two spheres, we can say that the large sphere gains some negative charge from the smaller sphere, while the smaller sphere loses some of its negative charges. This is because charges always flow from a higher potential to a lower potential until both reach the same potential. The larger sphere had a lower potential than the smaller sphere because it was positively charged, so charges flowed from the higher potential (the smaller sphere) to the lower potential (the larger sphere).

To learn more about positively charged, refer:-

https://brainly.com/question/2903220

#SPJ11

a and b are two spheres with identical mass and radius. however, they are made of different materials. sphere b is made of a more dense core and a less dense shell around it. compare the moment of inertia of sphere a about its center of mass to the moment of inertia of sphere b about its center of mass? ia. ia > ib ib. ia < ib ic. ia

Answers

Spheres A and B have the same mass and radius but are composed of different materials. Sphere B has a denser core and a less dense shell.

Comparing the moment of inertia of spheres A and B. Given that both spheres A and B have identical mass and radius, but sphere B has a more dense core and a less dense shell, we can determine the relationship between their moments of inertia about their centers of mass.

To do this, we'll use the following equation for the moment of inertia of a solid sphere: I = (2/5)MR², where M is the mass of the sphere, R is its radius, and I is its moment of inertia.

For sphere A (uniform density), its moment of inertia can be calculated as:
Ia = (2/5)MaRa²

For sphere B (non-uniform density with a denser core), its moment of inertia can also be calculated using the same equation, but since it has a more dense core and a less dense shell, its moment of inertia will be smaller than that of sphere A. This is because the mass is distributed closer to the center, which reduces the moment of inertia.

So, comparing the moments of inertia for spheres A and B:
Ia > Ib

Thus, the correct answer is (a): Ia > Ib.

To know more about the moment of inertia refer here :

https://brainly.com/question/30051108#

#SPJ11

According to Bernoulli's principle, all other things being equal, for a non-viscous incompressible fluid undergoing streamline flow:
b) The greater the density of a fluid, the greater the buoyant force on any object submerged in the fluid.
C) The pressure in a fluid is lower where the fluid is moving faster
D) Air moves faster over an airplane wing than it does under.
E) The deeper the position in an incompressible fluid, the greater the density of the fluid.

Answers

The correct statement according to Bernoulli's principle is (C),the pressure in a fluid is lower where the fluid is moving faster.

What is Bernoulli's principle and how does it apply to non-viscous, incompressible fluids that undergo streamline flow?

The correct statement according to Bernoulli's principle is (C).

The pressure in a fluid is lower where the fluid is moving faster.

Bernoulli's principle states that for a non-viscous incompressible fluid undergoing streamline flow, the pressure of the fluid decreases as the speed of the fluid increases.

This means that where the fluid is moving faster, the pressure is lower, and where the fluid is moving slower, the pressure is higher. This principle is often used to explain phenomena such as lift on airplane wings and the flow of fluids through pipes.

The other statements in the question are not directly related to Bernoulli's principle. Density does play a role in the buoyant force on an object submerged in a fluid, but this is due to Archimedes' principle.

The speed of air over an airplane wing is related to Bernoulli's principle, but the statement is incomplete and does not fully explain the phenomenon of lift.

The density of a fluid increases with depth, but this is due to gravity and the weight of the fluid above, not Bernoulli's principle.

Learn more about Bernoulli's principle

brainly.com/question/30471862

#SPJ11

What are the differences between active galaxies and normal galaxies?

Answers

Answer:

An active galaxy emits up to thousands of times more energy than a normal galaxy and long jets of gas can spew forth from the galaxy at nearly the speed of light.

Explanation:

       A normal galaxy has a dormant super massive black hole at the center, and it is at a sleeping state after being fed on gas and matter. Whereas an active galaxy also has a super massive black hole at the center and is constantly feeding on gas, matter, stars and other things.

      Active galaxies are either quasars, blazars, or radio galaxies. They are significantly more luminous than a normal galaxy because they produce more electro-magnetic radiations across the spectrum from x-rays to radio waves.

      Active galaxies have shown to have a smaller number of star forming regions than normal galaxies because of the active nature of the AGN at the center causes high amounts of electromagnetic radiation which disturbs the star forming regions and it would take so much time to form new stars.

https://brainly.com/question/31711955: Click here for more information.

A laser beam shines straight up onto a flat, black foil of mass mfind an expression for the laser power p needed to levitate the foil. express your answer in terms of the variable m and appropriate constants.

Answers

To levitate the foil, the laser beam must exert enough radiation pressure to counteract the force of gravity on the foil. This radiation pressure is proportional to the intensity of the laser beam, which can be related to its power using the formula:

power = intensity x area

Assuming that the laser beam is circular and has a radius r, the area it covers on the foil is πr^2. Therefore, the power needed to levitate the foil can be expressed as:

p = (mg) / (πr^2)

where m is the mass of the foil, g is the acceleration due to gravity, and π is a constant.

This expression shows that the power needed to levitate the foil is directly proportional to its mass, and inversely proportional to the area covered by the laser beam. This makes intuitive sense, as a larger laser beam will spread the radiation pressure over a larger area, making it less effective at levitating the foil.

In practice, other factors such as the reflectivity of the foil and the absorption properties of the laser beam will also affect the power required to levitate it. However, the above expression provides a good starting point for understanding the basic physics of laser levitation.

learn more about the force of gravity here: brainly.com/question/29236134

#SPJ11

Create the following configurations of three or more charges. Draw the electric field lines for each situation. Avoid intersecting your electric field lines. Note that Diagram F is similar to Diagram E but has five negative charges piled onto the same location

Answers

Once the consecutive Charges square measure opposite in Sign like in between two same charges field lines square measure faint, however, once they're opposite in magnitude then field lines are closure and field intensity is greatest.x

How to illustrate the electric field lines

4. In F, the negative charge is five times greater than E, therefore, the line is going to be a lot curved compared to E, and field density is going to be higher just in the case of F compare to E.

5. Two same charges repel one another, therefore, field lines additionally repeal one another.

Once the consecutive Charges square measure opposite in Sign like in between two same charges field lines square measure faint, however, once they're opposite in magnitude then field lines are closure and field intensity is greatest.x

Read more about electric field lines here:

https://brainly.com/question/14372859

#SPJ1

Consider an experiment to investigate the specific heat capacity of iron in the following four questions. In this experiment, 175gof iron is always heated up and then added to 75 gof room temperature water. The initial temperature of the iron is 30°C 40°C 60°C or 80°Сin each trial. The sample of water always has an initial temperature of 20°C Multiple trials are run for each initial temperature of the iron sample, and the final temperature of the mixture is recorded. Question 2 5 pts Which of the following options are examples of quantities that were held constant - that is, independent variables that did not vary? Select all that apply. A. The mass of water B. The mass of the iron sample C. The initial temperature of water D. The initial temperature of the iron E.The final temperature of the mixture of water and iron

Answers

In this experiment to investigate the specific heat capacity of iron, it is important to identify the independent variables that were held constant throughout the trials.

The mass of water and the mass of the iron sample are examples of quantities that were held constant, as they were always 175g and 75g respectively. The initial temperature of the water was also held constant at 20°C. However, the initial temperature of the iron sample varied in each trial, with options of 30°C, 40°C, 60°C, or 80°C.

Therefore, the initial temperature of the iron sample is not an example of a quantity that was held constant.

The final temperature of the mixture of water and iron is also not a quantity that was held constant, as it was recorded as the dependent variable and varied depending on the initial temperature of the iron sample.

By holding certain variables constant, the experiment can be conducted more accurately and effectively to investigate the specific heat capacity of iron.

To know more about  initial temperature refer here:

https://brainly.com/question/16257814#

#SPJ11

two people, micah and lyra, with different near points are equally close to an object. both inspect the object through the same magnifier by holding the lens close to the eye. micah's near point is located farther away from his eye than lyra's near point is located relative to her eye. micah will experience a larger magnification for which of the following reasons? check all that apply.

Answers

Micah and Lyra have different near points and are inspecting an object through the same magnifier. Micah's near point is farther away from his eye compared to Lyra's near point. Micah will experience a larger magnification for the following reasons:

1. Micah's longer near point distance allows him to see the object more clearly through the magnifier, which increases the perceived magnification.


2. Since both are using the same magnifier, the lens properties remain constant. However, Micah's farther near point effectively increases the distance between the object and his eye, resulting in a larger magnification due to the increased distance.

In summary, Micah experiences a larger magnification because his near point is farther away from his eye, allowing him to see the object more clearly and at an effectively greater distance through the magnifier.

To know more about the magnification refer here :

https://brainly.com/question/31595015#

#SPJ11

When electromagnetic radiation with wavelength a = 2000 Å is incident on a clean tungsten plate in a vacuum, the maximum kinetic energy observed amongst the electrons ejected is 1.64 eV. Calculate the threshold wavelength above which it will not be possible to eject electrons from tungsten metal. express your answer in nm.

Answers

The tungsten metal's ability to expel electrons has a maximum threshold wavelength of 462.5 nm.

What is photoelectric effect?

When a substance absorbs electromagnetic radiation, a phenomenon known as the photoelectric effect causes electrically charged particles to be discharged from or within the material.

We can use the photoelectric effect equation to solve this problem:

E = hf - Φ

where:

E = maximum kinetic energy of the ejected electron

h = Planck's constant

f = frequency of the incident radiation

Φ = work function of tungsten (the energy required to remove an electron from the metal)

We can convert the given wavelength a = 2000 Å to frequency using the speed of light c:

f = c / λ = c / (a × 10⁻¹⁰ m) = (3.00 × 10⁸ m/s) / (2000 × 10⁻¹⁰ m) = 1.50 × 10¹⁵ Hz

Now we can substitute the values given into the photoelectric effect equation:

1.64 eV = (6.63 × 10⁻³⁴ J·s)(1.50 × 10¹⁵ Hz) - Φ

Solving for the work function Φ:

Φ = (6.63 × 10⁻³⁴ J·s)(1.50 × 10¹⁵ Hz) - 1.64 eV = 4.30 × 10⁻³⁴ J

The threshold frequency or wavelength is the one where the energy of the photon is just enough to overcome the work function and eject the electron. This occurs when the maximum kinetic energy of the ejected electron is zero. Setting E = 0 in the photoelectric effect equation and solving for the corresponding frequency or wavelength:

0 = hf - Φ

f = Φ / h = 4.30 × 10⁻¹⁹ J / 6.63 × 10⁻³⁴ J·s = 6.49 × 10¹⁴ Hz

λ = c / f = (3.00 × 10⁸ m/s) / (6.49 × 10¹⁴ Hz) = 462.5 nm

Therefore, the threshold wavelength above which it will not be possible to eject electrons from tungsten metal is 462.5 nm.

Learn more about photoelectric effect on:

https://brainly.com/question/1408276

#SPJ11

The tungsten metal's ability to expel electrons has a maximum threshold wavelength of 462.5 nm.

What is photoelectric effect?

When a substance absorbs electromagnetic radiation, a phenomenon known as the photoelectric effect causes electrically charged particles to be discharged from or within the material.

We can use the photoelectric effect equation to solve this problem:

E = hf - Φ

where:

E = maximum kinetic energy of the ejected electron

h = Planck's constant

f = frequency of the incident radiation

Φ = work function of tungsten (the energy required to remove an electron from the metal)

We can convert the given wavelength a = 2000 Å to frequency using the speed of light c:

f = c / λ = c / (a × 10⁻¹⁰ m) = (3.00 × 10⁸ m/s) / (2000 × 10⁻¹⁰ m) = 1.50 × 10¹⁵ Hz

Now we can substitute the values given into the photoelectric effect equation:

1.64 eV = (6.63 × 10⁻³⁴ J·s)(1.50 × 10¹⁵ Hz) - Φ

Solving for the work function Φ:

Φ = (6.63 × 10⁻³⁴ J·s)(1.50 × 10¹⁵ Hz) - 1.64 eV = 4.30 × 10⁻³⁴ J

The threshold frequency or wavelength is the one where the energy of the photon is just enough to overcome the work function and eject the electron. This occurs when the maximum kinetic energy of the ejected electron is zero. Setting E = 0 in the photoelectric effect equation and solving for the corresponding frequency or wavelength:

0 = hf - Φ

f = Φ / h = 4.30 × 10⁻¹⁹ J / 6.63 × 10⁻³⁴ J·s = 6.49 × 10¹⁴ Hz

λ = c / f = (3.00 × 10⁸ m/s) / (6.49 × 10¹⁴ Hz) = 462.5 nm

Therefore, the threshold wavelength above which it will not be possible to eject electrons from tungsten metal is 462.5 nm.

Learn more about photoelectric effect on:

brainly.com/question/1408276

#SPJ11

What is the best definition for hypothermia? Damage to skin caused by long exposure to freezing temperatures Very low internal body temperature caused by cold temperatures Significantly increased heart rate caused by cold temperatures Elevated blood pressure caused by vigorous exercise

Answers

The correct option is B, The best definition for hypothermia is "very low internal body temperature caused by cold temperatures." Hypothermia occurs when the body loses heat faster than it can produce heat, leading to a dangerously low body temperature.

Hypothermia is a medical condition that occurs when the body's core temperature drops below the normal range, usually below 95 degrees Fahrenheit (35 degrees Celsius). It is typically caused by exposure to cold temperatures for extended periods or immersion in cold water.

As the body loses heat faster than it can produce it, various symptoms may develop, including shivering, confusion, dizziness, fatigue, slurred speech, and clumsiness. In severe cases, hypothermia can lead to organ failure, coma, and even death. Treatment for hypothermia involves rewarming the body, either passively or actively, and providing supportive care to address any complications that may arise.

To learn more about Hypothermia visit here:

brainly.com/question/6552936

#SPJ4

a block is on a horizontal surface (a shake table) that is moving back and forth horizontally with simple harmonic motion of frequency 2.0hz. the coefficient of static friction between block and surface is 0.50. how great can the amplitude of the shm be if the block is not to slip along the surface?

Answers

Maximum amplitude = (0.50 * 9.8 m/[tex]s^2[/tex]) / (2π * 2.0 Hz)[tex]^2[/tex] ≈ 0.249 m

To prevent the block from slipping along the surface, the maximum amplitude of the simple harmonic motion (SHM) can be determined by considering the maximum value of the centripetal acceleration acting on the block.

The centripetal acceleration required to prevent slipping is given by:

ac = ω^2 * R

where ω is the angular frequency of the SHM and R is the amplitude of the motion.

The maximum static friction force (fs) can be calculated using the coefficient of static friction (μs) and the normal force (N) acting on the block. In this case, the normal force is equal to the weight of the block (mg).

fs = μs * N = μs * mg

Since the centripetal acceleration is provided by the friction force, we have:

ac = fs / m = (μs * mg) / m = μs * g

Setting the centripetal acceleration equal to the maximum value, we get:

μs * g = ω^2 * R

Solving for R:

R = (μs * g) / ω^2

Substituting the given values, with μs = 0.50, g = 9.8 m/s^2, and ω = 2π * 2.0 Hz, we can calculate R:

R = (0.50 * 9.8 m/s^2) / (2π * 2.0 Hz)^2 ≈ 0.249 m or 24.9 cm

Therefore, the maximum amplitude of the SHM can be approximately 24.9 cm to prevent the block from slipping along the surface.

For more such questions on amplitude, click on:

https://brainly.com/question/3613222

#SPJ11

A sled slides along a horizontal surface on which the coefficient of kinetic friction is 0.25. Its velocity at point A is 7.6m/s and at point B is 4.8m/s . Use the impulse-momentum theorem to find how long the sled takes to travel from A to B.

Answers

Using the impulse-momentum theorem, the sled takes 1.46 seconds to travel from point A to point B.

The impulse-momentum theorem relates the impulse acting on an object to its change in momentum. In this problem, we can use this theorem to determine the time it takes for the sled to travel from point A to point B.

First, we need to determine the change in momentum of the sled as it moves from point A to point B. We can do this using the formula:

Δp = mΔv

where Δp is the change in momentum, m is the mass of the sled, and Δv is the change in velocity of the sled.

Δp = mΔv

Δp = m(vB - vA)

Δp = (m)(4.8 m/s - 7.6 m/s)

Δp = -3.6m

The negative sign indicates that the sled is losing momentum as it moves from point A to point B.

Next, we can use the impulse-momentum theorem to relate the change in momentum to the impulse acting on the sled. The impulse is given by the formula:

J = Δp

where J is the impulse.

J = Δp

J = -3.6m

Now, we can use the definition of impulse to relate it to the force acting on the sled and the time it takes for the force to act. The force is given by:

F = ma

where F is the force, m is the mass of the sled, and a is the acceleration of the sled.

The force of kinetic friction acting on the sled is given by:

Ff = μkN

where Ff is the force of friction, μk is the coefficient of kinetic friction, and N is the normal force acting on the sled.

Since the sled is moving horizontally, the normal force is equal to the weight of the sled:

N = mg

where g is the acceleration due to gravity.

Now, we can combine these equations to solve for the time it takes for the sled to travel from point A to point B:

J = FΔt

-3.6m = μkNΔt

-3.6m = μkmgΔt

Δt = -3.6m / (μkmg)

Substituting the given values, we get:

Δt = -3.6m / (0.25)(m)(9.81 m/s²)

Δt = -1.46 s

Since the time cannot be negative, we take the absolute value of the result:

Δt = 1.46 s

Therefore, the sled takes 1.46 seconds to travel from point A to point B.

To know more about impulse-momentum theorem, refer to the link below:

https://brainly.com/question/14121529#

#SPJ11

1. the earth's orbit is an ellipse with the sun at one focus. the length of the major axis is 186,000,000 miles and the eccentricity is 0.0167. find the distances from the ends of the major axis to the sun. these are the greatest and least distances from the earth to the sun.

Answers

The greatest distance is 94.5 million miles and the least distance is 91.4 million miles from the Sun.

The distance from the Earth to the Sun varies throughout the year due to the elliptical shape of the Earth's orbit.

The length of the major axis is 186,000,000 miles and the eccentricity is 0.0167.

Using Kepler's Laws, we can calculate the greatest and least distances from the Earth to the Sun.

The distance from the Sun to one end of the major axis is known as the aphelion, and it is approximately 94.5 million miles.

The other end of the major axis is known as the perihelion, and it is approximately 91.4 million miles from the Sun.

These distances have a significant impact on the Earth's climate, causing seasonal changes and affecting the planet's overall temperature.

For more such questions distance, click on:

https://brainly.com/question/26550516

#SPJ11

Hi, I want to know how to approach how the trajectory of a NASA spacecraft called "Lucy". Can anyone explain it at the pre-college level? If you can't, please tell me what I need to study.
Or Can anyone explain this to me?

Answers

It should be noted that to begin exploring the mission's directives, understanding the scientific objectives of the voyage is imperative.

How to explain the information

The focus of Lucy's exploration aims to study a unique collective of asteroids referred to as Trojan asteroids that revolve around the sun in conjunction with Jupiter. By comprehensively examining these primitive asteroids, scientists hope to uncover critical insights into how our Solar System came into existence.

Once familiar with the pursuable matters at hand during this expedition, learning about the vessel responsible for conducting such research becomes pertinent. Equipped with an array of advanced scientific instruments catered towards thoroughly studying asteroids and solar panels to power its operations, Lucy also boasts flexible trajectory capabilities due to its propulsion system.

Learn more about space on

https://brainly.com/question/30385726

#SPJ1

The dot product between two vectors is negative when the angle between the vectors is:A) less than 90 degreesB) between 90 and 180 degreesC) between 30 and 60 degreesD) 90 degreesE) between 0 and 90 degrees

Answers

The dot product between two vectors is a scalar value that measures the extent to which the two vectors point in the same direction. The dot product is negative when the angle between the vectors is obtuse, meaning it is greater than 90 degrees.


To understand why this is the case, consider the formula for the dot product:
a · b = |a| |b| cos θ
where a and b are two vectors, |a| and |b| are their magnitudes, θ is the angle between them, and cos θ is the cosine of that angle.
If the angle between the vectors is acute, meaning it is less than 90 degrees, then cos θ is positive and the dot product is positive. If the angle between the vectors is right (90 degrees), then cos θ is 0 and the dot product is 0. However, if the angle between the vectors is obtuse, meaning it is greater than 90 degrees, then cos θ is negative and the dot product is negative.
In summary, the dot product between two vectors is negative when the angle between them is greater than 90 degrees, or when the answer is B) between 90 and 180 degrees.

learn more about vectors here

https://brainly.com/question/13492374

#SPJ11

Complete each sentence using each term once.
g. social exchange
h. conformity
- social category
-. social aggregate
- primary group
-. secondary group
. reference group
- social network
i. groupthink
j. formal organization
k. bureaucracy
1. rationalism
1. A
is an impersonal and goal-
oriented group that involves only a segment of
one's life.

Answers

A secondary group is impersonal and goal-oriented in contrast to a major group. It only touches a small portion of its members' life. Secondary organizations arise to carry out a particular task.

Larger and more impersonal secondary groups are frequent. Additionally, they could be time- and task-limited. The roles of these groups are more goal- or task-oriented than emotional, serving an instrumental purpose as opposed to an expressive one. A secondary group can be one's coworkers or other classmates.

To learn more about secondary group, click:

https://brainly.com/question/30854001

#SPJ1

Mixed wave frequencies presented together produce:

Answers

Mixed wave frequencies presented together produce a phenomenon called interference, which can result in either constructive or destructive interference, depending on the alignment of the waves' phases.

Mixed wave frequencies presented together can produce interference patterns that can either amplify or cancel out certain frequencies. This is known as the principle of superposition. The resulting pattern is determined by the amplitude and phase of each wave. This phenomenon can be observed in a variety of natural phenomena, such as sound waves and light waves. In the case of sound waves, interference can lead to the creation of beats or harmonics, while in the case of light waves, interference can produce colorful patterns such as those seen in soap bubbles or oil slicks.
To know more about properties of sound waves, click here:-

https://brainly.com/question/8845912

#SPJ11

Each deviation in the numerator for variance is squared because
without squaring each deviation, the solution for SS would be zero
this inflates the value for variance, making it more accurate
without squaring each deviation, the solution could be negative
both A and C

Answers

Each deviation in the numerator for variance is squared because: a. without squaring each deviation, the solution could be negative

The terms "deviation," "variance," and "squared" are key to understanding this concept. Deviation refers to the difference between each data point and the mean of the dataset. Variance is a measure of dispersion, indicating how spread out the data points are in a dataset.
When calculating variance, you first find the deviation of each data point from the mean. Squaring these deviations is essential because it eliminates the possibility of obtaining a negative value in the solution. Negative values could arise due to the presence of both positive and negative deviations, which would cancel each other out if not squared. By squaring the deviations, all values become positive, ensuring an accurate representation of the dataset's dispersion. Thus, the primary reason for squaring deviations in the numerator for variance is to avoid a negative solution and obtain a true measure of the data's spread.

learn more about deviation refer: https://brainly.com/question/20553308

#SPJ11

complete question:

Each deviation in the numerator for variance is squared because ______.

a. without squaring each deviation, the solution could be negative

b. this inflates the value for variance, making it more accurate

c. without squaring each deviation, the solution for SS would be zero

d. all of these

Other Questions
Among the compounds, water, 1-butyne,2-butyne and ethane , which compounds are stronger acids than ammonia 1-butyne and ethane water and ethane 2-butyne and 1-butyne water and 1-butyne PLEASE HELP I HAVe TO SUBMIT THIS NOW!! my current grade in math is a 28 :( and if I do this assignment my grade will go 40% percent up :) What gothic elements are NOT found in the fall of the house of usher which of the following have the greatest impact in determining and shaping public policy - political parties or interest groups? A client with a diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) has died. Which type of precautions is appropriate to use when performing postmortem care?a. Contact precautionsb. Droplet precautionsc. Compromised host precautionsd. Airborne precautions Offering payments to government officials is a practice widely accepted in Africa. Which of he following ethical theories is defined as a belief in time-and-place ethics and holds that thical truths depend on the circumstances? a. Utilitarian ethical theory b. Deontological theory c. Moral relativism theory d. Casuist ethical theory refer to example 2. after the loop executes, what will be the values at locations vary, vary 4, and vary 8? example 2 1:.data 2:varx dword 9,8,7,6,5,4,3,2,1,0 3:vary dword (lengthof varx) dup(0) 4:.code 5:mov esi,offset vary (sizeof varx) - 4 6:mov edi,4 7:mov ecx,lengthof varx - 1 8:l1:mov eax,varx[edi] 9:mov [esi],eax 10:add edi,4 11:sub esi,4 12:loop l1 What does "-zoic" in the eras of the geologic time scale refer to? A)WaterB)RockC)LifeD)Fossilization Douglas Fir loaded parallel to the grain will start to fail at approximately The histogram displays the ages of 50 randomly selected users of an online music service. Based on the data, is advertising on the service more likely to reach people who are younger than 30 or people who are 30 and older? an individual taxpayer reports the following items for the current year: items amount ordinary income from partnership x, operating a gym in which the taxpayer materially participates $85,000 net loss from partnership y, operating a boat rental business in which the taxpayer does not materially participate ($17,000) rental income from building rented to a third party $11,000 short-term capital gain from the sale of stock $12,000 what is the taxpayer's adjusted gross income for the year? Find the area of the composite figure.A) 38 square unitsB) 49 square unitsC) 41.7 square unitsD) 34.8 square units The transition from adolescence to adulthood, lasting from about age 18 to 25 and characterized by exploration and experimentation, is referred to as _____ adulthood. Cyanotic heart defects are more dangerous than acyanotic defects.TrueFalse =Let v be the vector from initial point P to terminal point P2. Write v in terms of i and j.P =(-6,5), P2 = (5,5)V=(Type your answer in terms of i and j.) If an entrepreneur says they are using "bootstrap financing," what are they referring to?A. They took a bank loan to help pay for their startup costs.B. They are looking for private investors for their company.C. They used their own money to start their business.D. They are looking to go public on the stock market. the normal force is equal to the perpendicular component of object's weight, which decreases as the angle of inclination increases.true or false HELP PLEASEEE :(Now that you have learned about various rules of grammar and explored some archetypes in A Midsummer Night's Dream, it is time to demonstrate your understanding.In the space below, write an analysis of one character from A Midsummer Night's Dream , exploring what archetype they represent. Use examples from the text to support your claim. In addition to thoroughly analyzing the text, use at least one example of each of the grammar skills you have studied in this lesson, including: a participle, an infinitive, an example of active voice, an example of passive voice, a nonrestrictive clause, and a verb that expresses subjunctive mood. Highlight or bold each example in your response. Your response should be between two hundred fifty and three hundred words.A MIDSUMMER NIGHT'S DREAM, ACT III: VERBALS, ARCHETYPES, SUBJUNCTIVE WILL MARK BRAINLIEST BENGAY aspirin, Cracker Jack cereal, Frito-Lay lemonade, and Fruit of the Loom laundry detergent are examples where consumers' ________ dictated that the extensions were inappropriate for the brand.A) brand knowledgeB) brand equityC) brand statureD) power gridE) brand salience