EXPLANATION:
Given;
We are given the step by step procedure to find the height of a triangle.
Required;
We are required to determine if the step by step solution is true or false.
Solution/Explanation;
When finding the height of a triangle, we may use the Pythagoras theorem or we may use trigonometric ratios for right angled triangles.
Note that the Pythagoras' theorem is also used only for right angled triangles and one of the three sides will be the height of the triangle.
When required to calculate the the height of a triangle given a line perpendicular to the base (that is, at a 90 degree angle with the base), and passing through the vertex opposite the base, the triangle can be effectively split into two parts along the perpendicular and the perpendicular line will then become the height. Also depending on the amount of information available, we may use the Pythagoras' theorem (if the other two sides are given). Alternatively we may use the trigonometric ratios if one other side and one of the angles is given.
Therefore,
ANSWER:
FALSE
Instructions: Find the area of the circle. Round your answer to the nearest tenth.
Given:
The Radius of the circle: 2.5 inch
To find:
The area of the circle
Step-by-step solution:
We know that:
The Area of the circle = π(r)²
The Area of the circle = π(2.5)²
The Area of the circle = 3.14 × (2.5)²
The Area of the circle =
A true-false test contains 10 questions. In how many different ways can this test be completed?(Assume we don't care about our scores.)This test can be completed indifferent ways.
Explanation:
The test contains 10 questions, each one can be answered either with 'true' or with 'false' which means that for each question there are only 2 options.
We need to find the number of ways in which the test can be completed.
To answer the question we use the fundamental counting principle:
In this case, there are 2 ways to complete each question, therefore, we multiply that by the 10 questions that we have:
[tex]2\times2\times2\times2\times2\times2\times2\times2\times2\times2[/tex]This can be simplified to
[tex]2^{10}[/tex]which is equal to:
[tex]2^{10}=\boxed{1024}[/tex]Answer:
1024
Tim and Kevin each sold candies and peanuts for a school fund-raiser. Tim sold 16 boxes of candies and 4 boxes of peanuts and earned $132. Kevin sold 6 boxes of peanuts and 20 boxes of candies and earned $190. Find the cost of each. Cost of a box of candy. Cost of a box of peanuts.
We have the following:
let x cost of a box of candy
let y cost of a box of peanuts
[tex]\begin{gathered} \text{ Tim} \\ 16x+4y=132 \\ \text{ Kevin} \\ 20x+6y=190 \end{gathered}[/tex]resolving the system of equations:
[tex]\begin{gathered} 20x+6y=190 \\ 16x+4y=132\Rightarrow4y=132-16x\Rightarrow y=\frac{132-16x}{4} \\ \text{replacing:} \\ 20x+6\cdot(\frac{132-16x}{4})=190 \\ 20x+198-24x=190 \\ -4x=190-198 \\ x=\frac{-8}{-4} \\ x=2 \end{gathered}[/tex]now, for y
[tex]\begin{gathered} y=\frac{132\cdot16\cdot2}{4} \\ y=25 \end{gathered}[/tex]Therefore the cost of the box of candy is $ 2 and the cost of the box of peanuts is $ 25
Haley spent 1/2 oven hour playing on her phone that used up 1/9 of her battery how long would she have to play on her phone to use the entire battery
1/2 hour playing -- 1/9 battery
1 hour playing -- 2/9 battery
1 1/2 hours playing --- 3/9 battery
2 hours playing ------ 4/9 battery
2 1/2 hours playing ---- 5/9 battery
3 hours playing ----- 6/9 battery
3 1/2 hours playing --- 7/9 battery
4 hours playing -----8/9 battery
4 1/2 hours playing ---- 9/9 battery
9/9 represent the entire battery so che can play 4.5 hours on her phone
it can be represented into a fraction as
[tex]4.5=4\frac{1}{2}=\frac{9}{2}[/tex]giving the figure below, what is the measure of angle JKL
The measure of < JKL = 25+25 = 50 degrees.
Angle JOK = 360 -230 = 130 degrees , (where O is the center of the circle)
< OLK = < OJK = 90 degrees ( tangent to a circle)
< LOK = < JOK = 180 - (90+65) = 180 - 155 = 25 degrees
The solution is: < JKL = 25 +25 = 50 degrees
put the numbers in order from least to greatest2.3,12/5,5/2,2.2,21/10
Express the fraction in terms of decimal.
[tex]\frac{12}{5}=2.4[/tex][tex]\frac{5}{2}=2.5[/tex][tex]\frac{21}{10}=2.1[/tex]The numbers are,
2.3, 2.4, 2.5, 2.2, 2.1.
Now we arrange the number from least to greatest.
[tex]2.1,2.2,2.3,2.4,2.5[/tex]So answer is,
[tex]\frac{21}{10},2.2,2.3,\frac{12}{5},\frac{5}{2}[/tex]e) A client takes 1 1/2 tablets of medication three times per day for 4 days. How many tablets will the clienthave taken at the end of four days? Explain how your arrived at your answer.
Given
Client takes 1 1/2 of medication one time
Find
how many tablets will client have been taken at the end of 4 days.
Explanation
Client takes medication one time = 1 1/2
Client takes medication three times =
[tex]\begin{gathered} 1\frac{1}{2}\times3 \\ \frac{3}{2}\times3 \\ \frac{9}{2} \end{gathered}[/tex]medication for 4 days =
[tex]\begin{gathered} \frac{9}{2}\times4 \\ 18 \end{gathered}[/tex]Final Answer
The client takes 18 tablets at the end of four days.
12. Jimmy is paid $14.50 per hour for a regular forty-hour work week and 5 point time and a half for any hour worked over 40. This pas week, Jimmy earned $754.00 in total pay. How many hours of overtime did Jimmy work?
Jimmy is paid $14.50 per hour for a regular forty-hour work week and 5 point time and a half for any hour worked over 40. This pas week, Jimmy earned $754.00 in total pay. How many hours of overtime did Jimmy work?
Let
x -----> the total hours worked
we have that
$14.50 --------> 40 hours
5.5($14.50) -------> > 40 hours
so
754=14.50*40+5.5(14.50)x
solve for x
754=580+79.75x
79.75x=754-580
79.75x=174
x=2.2 hours
select the ordered pair that represent solutions of the system of inequalities A) (-1,3)B) (0,0)C) (-4,1)D) (0,2)E) (-5,0)F) ( -4,4)G) (-5,3)H) (-6,5)please answer fast
From the graph, the solution of the graph is given by the area of intersection of the two functions. The are under the area of the two functions are (-4, 1), (-5, 0), (-4, 4)
A glacier in Republica was observed to advance 22inches in a 15 minute period. At that rate, how many feet will the glacier advance in one year?
To fins the rate in feet/year we must change first the measurements to the units required
inches to feat
minutes to years
[tex]22in\cdot\frac{1ft}{12in}=\frac{11}{6}ft[/tex][tex]15\min \cdot\frac{1h}{60\min}\cdot\frac{1day}{24h}\cdot\frac{1year}{365\text{days}}=\frac{1}{35040}\text{years}[/tex]to find the rate divide the distance over the time
[tex]\frac{\frac{11}{6}ft}{\frac{1}{35040}\text{year}}=\frac{11\cdot35040ft}{6\text{year}}=\frac{385440}{6}=\frac{64240ft}{\text{year}}[/tex]Here's a graph of a linear function. Write theequation that describes that function.Express it in slope-intercept form.Enter the correct answer.000DONEClear allĐOO
Write a numerical expression for the word expression.The product of 2 groups of 7
The given statement is the product of 2 groups of 7.
This statement can be expressed as
[tex]7\cdot7[/tex]Where each seven represent one group.
Solve the system of equation by the elimination method {1/3x+1/2y=1/2{1/6x-1/3y=5/6(x,y)=(_, _)
Solution
- The solution steps to solve the system of equations by elimination is given below:
[tex]\begin{gathered} \frac{x}{3}+\frac{y}{2}=\frac{1}{2}\text{ \lparen Equation 1\rparen} \\ \\ \frac{x}{6}-\frac{y}{3}=\frac{5}{6}\text{ \lparen Equation 2\rparen} \\ \\ \text{ Multiply Equation 2 by 2} \\ 2\times(\frac{x}{6}-\frac{y}{3})=\frac{5}{6}\times2 \\ \\ \frac{x}{3}-\frac{2y}{3}=\frac{5}{3}\text{ \lparen Equation 3\rparen} \\ \\ \\ \text{ Now, }\frac{x}{3}\text{ is common to both Equations 1 and 3.} \\ \\ \text{ We can therefore subtract both equations to eliminate }x. \\ \text{ We have:} \\ \text{ Equation 1 }-\text{ Equation 3} \\ \\ \frac{x}{3}+\frac{y}{2}-(\frac{x}{3}-\frac{2y}{3})=\frac{1}{2}-\frac{5}{3} \\ \\ \frac{x}{3}-\frac{x}{3}+\frac{y}{2}+\frac{2y}{3}=\frac{1}{2}-\frac{5}{3}=\frac{3}{6}-\frac{10}{6} \\ \\ \frac{y}{2}+\frac{2y}{3}=-\frac{7}{6} \\ \\ \frac{3y}{6}+\frac{4y}{6}=-\frac{7}{6} \\ \\ \frac{7y}{6}=-\frac{7}{6} \\ \\ \therefore y=-1 \\ \\ \text{ Substitute the value of }y\text{ into any of the equations, we have:} \\ \frac{1}{3}x+\frac{1}{2}y=\frac{1}{2} \\ \frac{1}{3}x+\frac{1}{2}(-1)=\frac{1}{2} \\ \\ \frac{1}{3}x=\frac{1}{2}+\frac{1}{2} \\ \\ \frac{1}{3}x=1 \\ \\ \therefore x=3 \end{gathered}[/tex]Final Answer
The answer is:
[tex]\begin{gathered} x=3,y=-1 \\ \\ \therefore(x,y)=(3,-1) \end{gathered}[/tex]help meeeee pleaseeeee!!!
thank you
Answer:
(f o g) = 464
Step-by-step explanation:
f(x) = x² - 3x + 4; g(x) = -5x
(f o g)(4) = f(g(4))
f(g(4)) = -5(4) = -20
f(g(4)) = (-20)² - 3(-20) + 4
f(g(4)) = 464
I hope this helps!
In the accompanying regular pentagonal prism, suppose that each base edge measures 7 in. and that the apothem of the base measures 4.8 in. The altitude of the prism measures 10 in.A regular pentagonal prism and a pentagon are shown side by side. The pentagon contains a labeled segment and angle.The prism contains a horizontal top and bottom and vertical sides. The front left face and front right face meet the bottom base at right angles.The pentagon is labeled "Base".A line segment starts in the center of the pentagon, travels down vertically, and ends at the edge. The segment is labeled a.The vertical segment forms a right angle with the edge.(a)Find the lateral area (in square inches) of the prism.in2(b)Find the total area (in square inches) of the prism.in2(c)Find the volume (in cubic inches) of the prism.in3
To determine the lateral area of the prism;
[tex]Lateral\text{ area=perimeter of the base}\times height[/tex][tex]Lateral\text{ area=5\lparen7\rparen }\times10=350in^2[/tex]To determine total area of the prism;
[tex]Total\text{ area=2\lparen area of base\rparen+Lateral area}[/tex][tex]\begin{gathered} Total\text{ area of the prism=2\lparen}\frac{1}{2}\times perimeter\text{ of the base}\times apotherm\text{\rparen+350} \\ \end{gathered}[/tex][tex]\begin{gathered} Total\text{ area of the prism=2\lparen}\frac{1}{2}\times5(7)\times4.8\text{\rparen+380=168+350=518in}^2 \\ \end{gathered}[/tex]To determine the volume of the prism;
[tex]Volume\text{ = base area }\times height[/tex][tex]Volume=\frac{1}{2}\times5(7)\times4.8\times10=840in^3[/tex]Hence
help meeeee pleaseeeee!!!
thank you
Step-by-step explanation:
what is the problem ?
first you need to put "1" in place of the x and calculate, and then you need to put "2" in place of the x and calculate.
just simple calculation !
(a)
R(1) = 1000×1² / (1² + 4) = 1000 / 5 = 200
$200 million
(b)
R(2) = 1000×2² / (2² + 4) = 4000 / 8 = 500
$500 million
there ! that's all that was needed.
The cost of a pair of skis to a store owner was $700, and she sold the pair of skis for $1020.Step 3 of 3: What was her percent of profit based on selling price? Follow the problem-solving process and round your answer to thenearest hundredth if necessary.
Answer:
Explanation:
• The ,cost price ,of the pair of skis = $700
,• The ,selling price ,of the pair of skis = $1020
To calculate the percentage of profit, use the formula below:
[tex]\text{Percent of Profit=}\frac{Selling\text{ Price-Cost Price}}{\text{Selling Price}}\times\frac{100}{1}[/tex]Substitute the given values:
[tex]\text{Percent of Profit=}\frac{1020\text{-7}00}{\text{7}00}\times\frac{100}{1}\text{=}\frac{320}{\text{7}00}\times\frac{100}{1}=45.71\%[/tex]The percentage profit is % (correct to the nearest hundredth).
Copper has a density of 4.44 g/cm3. What is the volume of 2.78 g of copper?
60 points please help
The volume of 2.78 g of copper is 0.626 [tex]cm^{3}[/tex].
According to the question,
We have the following information:
Density of cooper = 4.44 [tex]g/cm^{3}[/tex]
Mass of copper = 2.78 g
We know that the following formula is used to find the density of any material:
Density = Mass/volume
Let's denote the volume of copper be V.
Now, putting the values of mass and density here:
4.44 = 2.78/V
V = 2.78/4.44
V = 0.626 [tex]cm^{3}[/tex]
(Note that the units if mass, volume and density are written with the numbers. For example, in this case, the unit of mass is grams, the unit of volume is [tex]cm^{3}[/tex].)
Hence, the volume of the copper is 0.626 [tex]cm^{3}[/tex].
To know more about volume here
https://brainly.com/question/1578538
#SPJ1
How do I solve:7/8+y= -1/8
We are given the following equation
[tex]\frac{7}{8}+y=-\frac{1}{8}[/tex]Let us solve the equation for variable y
Our goal is to separate out the variable y
Subtract 7/8 from both sides of the equation.
[tex]\begin{gathered} \frac{7}{8}-\frac{7}{8}+y=-\frac{1}{8}-\frac{7}{8} \\ y=-\frac{1}{8}-\frac{7}{8} \end{gathered}[/tex]Since the denominators of the two fractions are the same, simply add the numerators.
[tex]\begin{gathered} y=-\frac{1}{8}-\frac{7}{8} \\ y=\frac{-1-7}{8} \\ y=\frac{-8}{8} \\ y=-1 \end{gathered}[/tex]Therefore, the value of y is -1
* #3: Write the mixed number shown below as a decimal. 6 3/4
Answer:
6.75
Hope it helps!
Let me know if its wrong
3. Ketin's card collection is made up of baseball cards and footbal cards. The ratio of baseball cards to football cards is 6 to 7. He has 120 baseball cards. How many cards are in Kerin's card collection? Show your work.
SOLUTION
Let the total number of cards in Ketin's card collection be k
Let the number of baseball cards be b, and
the number of football cards be f
Now, the ratio of baseball cards to football cards is 6 to 7, that is
[tex]\begin{gathered} b\colon f=6\colon7 \\ \frac{b}{f}=\frac{6}{7} \\ \text{cross multiplying, we have } \\ 7\times b=6\times f \\ 7b=6f \\ \text{dividing both sides by 7 to get b, we have } \\ \frac{7b}{7}=\frac{6f}{7} \\ b=\frac{6f}{7} \end{gathered}[/tex]Also, he has 120 baseball cards.
This means
[tex]\begin{gathered} b=120 \\ \text{but } \\ b=\frac{6f}{7} \\ \text{That means that } \\ b=\frac{6f}{7}=120 \\ So,\text{ } \\ \frac{6f}{7}=120 \\ \frac{6f}{7}=\frac{120}{1} \\ \text{cross multiplying, we have } \\ 6f=120\times7 \\ \text{dividing by 6, we have } \\ f=\frac{120\times7}{6} \\ 120\text{ divided by 6 = 20, we have } \\ f=20\times7 \\ f=140 \end{gathered}[/tex]So, the total number of cards in Ketin's card collection is
[tex]120+140=260[/tex]Hence the answer is 260
Find the measures of the sine and cosine of the following triangles
Let x be the side opposite to angle 62 degrees
Let y be the adjacent angle.
The sine of the angle is given as follows:
[tex]\begin{gathered} \sin62=\frac{Opposite}{Hypotenuse}=\frac{x}{10} \\ \end{gathered}[/tex]The cosine is given as:
[tex]\cos62=\frac{Adjacent}{Hypotenuse}=\frac{y}{10}[/tex]Find the solution 5(x-9)+3=5x-42A) x=9B) x=-9C) Infinite SolutionsD) No Solutions
Answer:
C. Infinite Solutions
Explanation:
Given the equation
[tex]5\mleft(x-9\mright)+3=5x-42[/tex]First, open the bracket
[tex]\begin{gathered} 5x-45+3=5x-42 \\ 5x-42=5x-42 \end{gathered}[/tex]Since the left-hand side equals the right-hand side, the system has Infinite Solutions.
The first year shown the number of students per teacher fell below 16 was
Using the y axis, we want to find when it goes below 16
The x value when y is less than 16 for the first time is 2002
A spinner is divided into 5 equally sized segments colored blue, green, black, red, and yellow. Suppose you spin the wheel once and then spin it again. What is the probability of landing on the color red both times? Give your answer as an exact fraction and reduce the fraction as much as possible.
The probability of landing in any colour is:
[tex]\frac{1}{5}[/tex]so if we want to get a red, both times, we to multiply 1/5 twice
[tex]\frac{1}{5}\cdot\frac{1}{5}=\frac{1}{25}[/tex]so, the probability of getting red twice is 1/25
Х о 12 3 4 у -6 1 8 15 22what is the slope intercept form
What is the solution of the system of equations? Explain.18x+15-y=05y=90x+12
The given system is
[tex]\begin{cases}18x+15-y=0 \\ 5y=90x+12\end{cases}[/tex]First, we multiply the first equation by 5.
[tex]\begin{cases}90x+75-5y=0 \\ 5y=90x+12\end{cases}[/tex]Then, we combine the equations
[tex]\begin{gathered} 90x+75-5y+5y=90x+12 \\ 90x+75=90x+12 \\ 75=12 \end{gathered}[/tex]Given that the result is not true (75 is not equal to 12), we can deduct that the system has no solutions.
The ratio of a quarterback's completed passes to attempted passes is 5 to 8. If he attempted 16 passes, find how many passes he completed. Round to the nearest whole number if necessary.
The ratio of a quarterback's completed passes to attempted passes is 5 to 8. If he attempted 16 passes, find how many passes he completed. Round to the nearest whole number if necessary.
Let
x -----> number of quarterback's completed passes
y -----> number of quarterback's attempted passes
so
x/y=5/8 -----> x=(5/8)*y -----> equation A
y=16 -----> equation B
substitute equation B in equation A
x=(5/8)*16
x=10
therefore
the answer is 10 completed passesWhat is the row echelon form of this matrix?
The row echelon form of the matrix is presented as follows;
[tex]\begin{bmatrix}1 &-2 &-5 \\ 0& 1 & -7\\ 0&0 &1 \\\end{bmatrix}[/tex]
What is the row echelon form of a matrix?The row echelon form of a matrix has the rows consisting entirely of zeros at the bottom, and the first entry of a row that is not entirely zero is a one.
The given matrix is presented as follows;
[tex]\begin{bmatrix}-3 &6 &15 \\ 2& -6 & 4\\ 1&0 &-1 \\\end{bmatrix}[/tex]
The conditions of a matrix in the row echelon form are as follows;
There are row having nonzero entries above the zero rows.The first nonzero entry in a nonzero row is a one.The location of the leading one in a nonzero row is to the left of the leading one in the next lower rows.Dividing Row 1 by -3 gives:
[tex]\begin{bmatrix}1 &-2 &-5 \\ 2& -6 & 4\\ 1&0 &-1 \\\end{bmatrix}[/tex]
Multiplying Row 1 by 2 and subtracting the result from Row 2 gives;
[tex]\begin{bmatrix}1 &-2 &-5 \\ 0& -2 & 14\\ 1&0 &-1 \\\end{bmatrix}[/tex]
Subtracting Row 1 from Row 3 gives;
[tex]\begin{bmatrix}1 &-2 &-5 \\ 0& -2 & 14\\ 0&2 &4 \\\end{bmatrix}[/tex]
Adding Row 2 to Row 3 gives;
[tex]\begin{bmatrix}1 &-2 &-5 \\ 0& -2 & 14\\ 0&0 &18 \\\end{bmatrix}[/tex]
Dividing Row 2 by -2, and Row 3 by 18 gives;
[tex]\begin{bmatrix}1 &-2 &-5 \\ 0& 1 & -7\\ 0&0 &1 \\\end{bmatrix}[/tex]
The above matrix is in the row echelon form
Learn more about the row echelon form here:
https://brainly.com/question/14721322
#SPJ1
In the figure, ∆ABD ≅ ∆CBD by Angle-Side-Angle (ASA). Which segments are congruent by CPCTC? BC ≅ AD CB ≅ AB AB ≅ CD DB ≅ DC
By CPCTC this is the only valid answer:
CB ≅ AB
Another statement should be AD≅ CD