The correct answer is B. y=3x-2.
The slope of a line determines its steepness and direction. Parallel lines have the same slope, so for a line to be parallel to 3x+6y=5, it should have a slope of -1/2. Since none of the given options have this slope, none of them are parallel to the line 3x+6y=5. This line has the same slope of 3 as the given line, which makes them parallel.
Learn more about Parallel lines here
https://brainly.com/question/19714372
#SPJ11
In the figure, the square ABCD and the AABE are standing on the same base AB and between the same parallel lines AB and DE. If BD = 6 cm, find the area of AEB.
To find the area of triangle AEB, we use base AB (6 cm) and height 6 cm. Applying the formula (1/2) * base * height, the area is 18 cm².
To find the area of triangle AEB, we need to determine the length of the base AB and the height of the triangle. Since both square ABCD and triangle AABE is standing on the same base AB, the length of AB remains the same for both.
We are given that BD = 6 cm, which means that the length of AB is also 6 cm. Now, to find the height of the triangle, we can consider the height of the square. Since AB is the base of both the square and the triangle, the height of the square is equal to AB.
Therefore, the height of triangle AEB is also 6 cm. Now we can calculate the area of the triangle using the formula: Area = (1/2) * base * height. Plugging in the values, we get Area = (1/2) * 6 cm * 6 cm = 18 cm².
Thus, the area of triangle AEB is 18 square centimeters.
For more questions on the area of a triangle
https://brainly.com/question/30818408
#SPJ8
(a) Find the work done by a force 5 i^ +3 j^ +2 k^ acting on a body which moves from the origin to the point (3,−1,2). (b) Given u =− i^ +2 j^ −1 k^and v = 2l −1 j^ +3 k^ . Determine a vector which is perpendicular to both u and v .
a) The work done by the force F = 5i + 3j + 2k on a body moving from the origin to the point (3, -1, 2) is 13 units.
b) A vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k is -6i - 7j - 3k.
a) The work done by a force F = 5i + 3j + 2k acting on a body that moves from the origin to the point (3, -1, 2) can be determined using the formula:
Work done = ∫F · ds
Where F is the force and ds is the displacement of the body. Displacement is defined as the change in the position vector of the body, which is given by the difference in the position vectors of the final point and the initial point:
s = rf - ri
In this case, s = (3i - j + 2k) - (0i + 0j + 0k) = 3i - j + 2k
Therefore, the work done is:
Work done = ∫F · ds = ∫₀ˢ (5i + 3j + 2k) · (ds)
Simplifying further:
Work done = ∫₀ˢ (5dx + 3dy + 2dz)
Evaluating the integral:
Work done = [5x + 3y + 2z]₀ˢ
Substituting the values:
Work done = [5(3) + 3(-1) + 2(2)] - [5(0) + 3(0) + 2(0)]
Therefore, the work done = 13 units.
b) To find a vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k, we can use the cross product of the two vectors:
u × v = |i j k|
|-1 2 -1|
|2 -1 3|
Expanding the determinant:
u × v = (-6)i - 7j - 3k
Therefore, a vector that is perpendicular to both u and v is given by:
u × v = -6i - 7j - 3k.
Learn more about force
https://brainly.com/question/30507236
#SPJ11
Bearing used in an automotive application is supposed to have a nominal inside diameter 1.5 inches. A random sample of 25 bearings is selected, and the average inside diameter of these bearings is 1.4975 inches. Bearing diameter is known to be normally distributed with standard deviation σ=0.1 inch. We want to test the following hypothesis at α=0.01. H0:μ=1.5,H1:μ=1.5 (a) Calculate the type II error if the true mean diameter is 1.55 inches. (b) What sample size would be required to detect a true mean diameter as low as 1.55 inches if you wanted the power of the test to be at least 0.9 ?
(a) Without knowing the effect size, it is not possible to calculate the type II error for the given hypothesis test. (b) To detect a true mean diameter of 1.55 inches with a power of at least 0.9, approximately 65 bearings would be needed.
(a) If the true mean diameter is 1.55 inches, the probability of not rejecting the null hypothesis when it is false (i.e., the type II error) depends on the chosen significance level, sample size, and effect size. Without knowing the effect size, it is not possible to calculate the type II error.
(b) To calculate the required sample size to detect a true mean diameter of 1.55 inches with a power of at least 0.9, we need to know the chosen significance level, the standard deviation of the population, and the effect size.
Using a statistical power calculator or a sample size formula, we can determine that a sample size of approximately 65 bearings is needed.
to know more about hypothesis test, visit:
brainly.com/question/32874475
#SPJ11
185 said they like dogs
170 said they like cats
86 said they liked both cats and dogs
74 said they don't like cats or dogs.
How many people were surveyed?
Please explain how you got answer
185 said they like dogs, 170 said they like cats, 86 said they liked both cats and dogs, and 74 said they don't like cats or dogs. The number of people who were surveyed is 515.
The number of people who were surveyed can be found by adding the number of people who liked dogs, the number of people who liked cats, the number of people who liked both, and the number of people who did not like either. So, the total number of people surveyed can be found as follows:
Total number of people who like dogs = 185
Total number of people who like cats = 170
Total number of people who like both = 86
Total number of people who do not like cats or dogs = 74
The total number of people surveyed = Number of people who like dogs + Number of people who like cats + Number of people who like both + Number of people who do not like cats or dogs
= 185 + 170 + 86 + 74= 515
You can learn more about the survey at: brainly.com/question/31624121
#SPJ11
What is the value of θ for the acute angle in a right triangle? sin(θ)=cos(53°) Enter your answer in the box. θ= °
Answer:
the value of θ for the acute angle in a right triangle, where sin(θ) = cos(53°), is 37 degrees.
Step-by-step explanation:
In a right triangle, one of the angles is always 90 degrees, which is the right angle. The acute angle in a right triangle is the angle that is smaller than 90 degrees.
To find the value of θ for the acute angle in a right triangle, given that sin(θ) = cos(53°), we can use the trigonometric identity:
sin(θ) = cos(90° - θ)
Since sin(θ) = cos(53°), we can equate them:
cos(90° - θ) = cos(53°)
To find the acute angle θ, we solve for θ by equating the angles inside the cosine function:
90° - θ = 53°
Subtracting 53° from both sides:
90° - 53° = θ
θ= 37°
Therefore, the value of θ for the acute angle in a right triangle, where sin(θ) = cos(53°), is 37 degrees.
Jocelyn estimates that a piece of wood measures 5.5 cm. If it actually measures 5.62 cm, what is the percent error of Jocelyn’s estimate?
Answer:
The percent error is -2.1352% of Jocelyn's estimate.
Consider a radioactive cloud being carried along by the wind whose velocity is
v(x, t) = [(2xt)/(1 + t2)] + 1 + t2.
Let the density of radioactive material be denoted by rho(x, t).
Explain why rho evolves according to
∂rho/∂t + v ∂rho/∂x = −rho ∂v/∂x.
If the initial density is
rho(x, 0) = rho0(x),
show that at later times
rho(x, t) = [1/(1 + t2)] rho0 [(x/ (1 + t2 ))− t]
we have shown that the expression ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - t] satisfies the advection equation ∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x.
The density of radioactive material, denoted by ρ(x,t), evolves according to the equation:
∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x
This equation describes the transport of a substance by a moving medium, where the rate of movement of the radioactive material is influenced by the velocity of the wind, determined by the function v(x,t).
To solve the equation, we use the method of characteristics. We define the characteristic equation as:
x = ξ(t)
and
ρ(x,t) = f(ξ)
where f is a function of ξ.
Using the method of characteristics, we find that:
∂ρ/∂t = (∂f/∂t)ξ'
∂ρ/∂x = (∂f/∂ξ)ξ'
where ξ' = dξ/dt.
Substituting these derivatives into the original equation, we have:
(∂f/∂t)ξ' + v(∂f/∂ξ)ξ' = -ρ ∂v/∂x
Dividing by ξ', we get:
(∂f/∂t)/(∂f/∂ξ) = -ρ ∂v/∂x / v
Letting k(x,t) = -ρ ∂v/∂x / v, we can integrate the above equation to obtain f(ξ,t). Since f(ξ,t) = ρ(x,t), we can express the solution ρ(x,t) in terms of the initial value of ρ and the function k(x,t).
Now, let's solve the advection equation using the method of characteristics. We define the characteristic equation as:
x = x(t)
Then, we have:
dx/dt = v(x,t)
ρ(x,t) = f(x,t)
We need to find the function k(x,t) such that:
(∂f/∂t)/(∂f/∂x) = k(x,t)
Differentiating dx/dt = v(x,t) with respect to t, we have:
dx/dt = (2xt)/(1 + t^2) + 1 + t^2
Integrating this equation with respect to t, we obtain:
x = (x(0) + 1)t + x(0)t^2 + (1/3)t^3
where x(0) is the initial value of x at t = 0.
To determine the function C(x), we use the initial condition ρ(x,0) = ρ0(x).
Then, we have:
ρ(x,0) = f(x,0) = F[x - C(x), 0]
where F(ξ,0) = ρ0(ξ).
Integrating dx/dt = (2xt)/(1 + t^2) + 1 + t^2 with respect to x, we get:
t = (2/3) ln|2xt + (1 + t^2)x| + C(x)
where C(x) is the constant of integration.
Using the initial condition, we can express the solution f(x,t) as:
f(x,t) = F[x - C(x),t] = ρ0 [(x - C(x))/(1 + t^2)]
To simplify this expression, we introduce A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2). Then, we have:
f(x,t) = [1/(1 +
t^2)] ρ0 [(x - C(x))/(1 + t^2)] = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]
Finally, we can write the solution to the advection equation as:
ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]
where A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2).
Learn more about advection equation here :-
https://brainly.com/question/32107552
#SPJ11