write a balanced chemical equation for the reaction of aqueous solutions of magnesium chloride and potassium phosphate

Answers

Answer 1

Answer: The balanced chemical equation for the reaction of aqueous solutions of magnesium chloride and potassium phosphate is; MgCl2(aq) + K3PO4(aq) → Mg3(PO4)2(s) + 6KCl(aq)

To balance the given chemical equation, the number of atoms of elements on both sides of the equation must be equal. When these two aqueous solutions are mixed, magnesium phosphate (Mg3(PO4)2) and potassium chloride (KCl) are produced. The two products are both in aqueous solutions.

Potassium chloride exists as ions in aqueous solution. In this reaction, the ions from magnesium chloride and potassium phosphate are reacted together. The reaction results in precipitation.

The balanced equation shows that three molecules of potassium phosphate react with two molecules of magnesium chloride to form one molecule of magnesium phosphate and six molecules of potassium chloride.

Therefore, the number of atoms of each element is equal on both sides.



Learn more about balanced chemical equation here:

https://brainly.com/question/28294176#

#SPJ11


Related Questions

How many grams of chlorine gas can be liberated from the decomposition of 169. 0 g. Of AuCl3

Answers

169.0 g of [tex]AuCl _{3}[/tex] can liberate 118.4 g of [tex]Cl_{2}[/tex] gas upon decomposition. The molar mass of [tex]AuCl _{3}[/tex] is 303.33 g/mol, which means that 1 mole of [tex]AuCl _{3}[/tex]contains 3 moles of chlorine (3 atoms of chlorine).

To determine the moles of [tex]AuCl _{3}[/tex]in 169.0 g, we divide the mass by the molar mass:

169.0 g / 303.33 g/mol = 0.557 moles of [tex]AuCl _{3}[/tex]

Since each mole of [tex]AuCl _{3}[/tex] produces 3 moles of chlorine, the total moles of chlorine that can be liberated from the decomposition of 0.557 moles of [tex]AuCl _{3}[/tex]is:

0.557 moles x 3 = 1.671 moles of [tex]Cl_{2}[/tex]

Finally, we use the molar mass of chlorine ([tex]Cl_{2}[/tex]), which is 70.90 g/mol, to convert the moles of [tex]Cl_{2}[/tex]to grams:

1.671 moles x 70.90 g/mol = 118.4 g of [tex]Cl_{2}[/tex]

Therefore, 169.0 g of [tex]AuCl _{3}[/tex]can liberate 118.4 g of [tex]Cl_{2}[/tex]gas upon decomposition.

Learn more about molar mass

https://brainly.com/question/22997914

#SPJ4

76.33 grams of NaCl were collected after experiment. How many moles were
produced?

Answers

76.33 grams of NaCl were collected after experiment 1.306 mol were

produced.

What is mole formula?

Every material has a molecular weight of 6.023 x 10²³. It may be used to quantify the chemical reaction's byproducts. The symbol mol is used to identify the unit. The molecular formula is written out as follows.

Mass of material / mass of one mole equals the number of moles.

We need to know the molar mass of NaCl in order to compute the number of moles of NaCl created.

The atomic weights of sodium (Na) and chlorine together make up the molar mass of sodium chloride (Cl). Na has an atomic mass of 22.99 g/mol, while Cl has an atomic mass of 35.45 g/mol. As a result, NaCl's molar mass is:

Molar mass of NaCl

= (1 x atomic mass of Na) + (1 x atomic mass of Cl)

= (1 × 35.45 g/mol plus 1 x 22.99 g/mol)

= 58.44 g/mol

The mass of gathered NaCl may now be converted into moles using the molar mass:

Mass of NaCl divided by its molar mass yields moles of NaCl.

moles of NaCl = 76.33 g / 58.44 g/mol

moles of NaCl = 1.306 mol

As a result, the experiment generated 1.306 moles of NaCl.

To know more about Moles visit:

https://brainly.com/question/21323029

#SPJ1

explain how you used your titration data to determine the volume of naoh used to reach the equivalence point of your titration. comment on the extent of agreement with the predicted volume you calculated above.g

Answers

To determine the volume of NaOH used to reach the equivalence point of the titration using the titration data, we need to find the point where the acid and base are neutralized.

At this point, the moles of acid and base are equal, and this is called the equivalence point.To find the volume of NaOH used at the equivalence point, we can use the following

Steps:1. Plot the titration data on a graph of pH versus volume of NaOH added.

Steps:2. Identify the point where the pH changes abruptly. This is the equivalence point.

Steps:3. Determine the volume of NaOH added at the equivalence point by reading the volume from the graph.

Steps:4. Compare the volume of NaOH used at the equivalence point of the titration with the predicted volume calculated above.The extent of agreement with the predicted volume can be assessed by calculating the percent error.

The percent error is calculated using the formula:

                                      Percent error = [(experimental value - theoretical value) / theoretical value] x 100

If the percent error is small, then the agreement is good. If the percent error is large, then there is a significant difference between the predicted and experimental values.

Learn more about equivalence point of the titration here, https://brainly.com/question/31181892

#SPJ11

which species is diamagnetic? which species is diamagnetic? si s i co3 c o 3 ba2 b a 2 ni3 n i 3

Answers

Answer: Out of the given species, the diamagnetic species are: Si, Ba2+ as they have all their electrons paired in their orbitals, so there are no unpaired electrons to get attracted by an external magnetic field.

Explanation:

Diamagnetism and Paramagnetism are two of the types of magnetism that exist in nature. Diamagnetism arises from a material's electrons' orbital motion in conjunction with one another, causing the magnetic field to cancel.

Diamagnetic materials have a weak, negative magnetic susceptibility, and they experience a repulsive force when in a magnetic field.Paramagnetic materials have a positive magnetic susceptibility, and they get weakly magnetized when exposed to a magnetic field.

The paramagnetism in these materials results from the presence of unpaired electrons in their orbitals.

Therefore, out of the given species, the diamagnetic species are: Si, Ba2+ as they have all their electrons paired in their orbitals, so there are no unpaired electrons to get attracted by an external magnetic field.



Learn more about diamagnetism here:

https://brainly.com/question/15462756#




#SPJ11

What does Einstein's famous equation say that all matter is?
concentrated supernovas that have condensed into dwarfs
concentrated energy that has condensed into the atoms
concentrated atoms that have condensed into protons
concentrated nebulas that have been condensed into red giants

Answers

Einstein's famous equation say that all matter is option B. concentrated energy that has condensed into the atoms.

What is Einstein's famous equation?

When combined with the speed of light, Einstein's famous equation E=mc2 demonstrates mathematically that energy and matter are one and the same. m stands for mass, c for the speed of light, and E stands for energy. This equation states that all matter is simply concentrated energy that has condensed into atoms.

Einstein's famous equation is E=mc², which expresses the relationship between mass (m) and energy (E), and the constant speed of light (c) in a vacuum. This equation shows that mass and energy are interchangeable, and that a small amount of mass can be converted into a large amount of energy, as demonstrated in nuclear reactions.

Learn more about Einstein at:

https://brainly.com/question/26366397

#SPJ1

which solute will have a more negative enthalpy of solution, assuming the same solvent is used and the solvent-solute interactions are the same in both cases: csi or lif?

Answers

CsI  (cesium iodide) is expected to have a more negative enthalpy of solution compared to LiF (lithium fluoride), assuming the same solvent is used and the solvent-solute interactions are the same in both cases.

What is the enthalpy of solution?

The enthalpy of solution is the energy released or absorbed when a solute dissolves in a solvent. The enthalpy of solution is negative if energy is released when the solute dissolves, indicating that the solution is exothermic.

CsI is expected to have a more negative enthalpy of solution compared to LiF because CsI has larger ions with a higher charge than LiF, and larger ions with higher charge tend to have stronger interactions with solvent molecules, leading to a more negative enthalpy of solution.

Learn about enthalpy here https://brainly.com/question/3836944

#SPJ1

What is the temperature of helium gas confined in a two Litre flask under a pressure of 2.05 atm?

Answers

The temperature of helium gas confined in a two Litre flask under a pressure of 2.05 atm is approximately 41.11 °C.

The temperature of helium gas confined in a two Litre flask under a pressure of 2.05 atm can be calculated using the Ideal Gas Law. The Ideal Gas Law is expressed as PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the universal gas constant, and T is temperature.

In this case, we know that the pressure is 2.05 atm and the volume is 2 L. We also know that helium is a monoatomic gas with a molar mass of 4 g/mol. We can use the universal gas constant R = 0.0821 L atm/mol K. Plugging in these values, we get:

2.05 atm × 2 L = n × 0.0821 L atm/mol K × T

Dividing both sides by 0.0821 L atm/mol K gives:

n = (2.05 atm × 2 L) / (0.0821 L atm/mol K × T)

Simplifying, n = 50 T / R. We can now solve for T: n = 50 T / R => T = nR / 50

Substituting in the values we have:

n = (2.05 atm × 2 L) / (0.0821 L atm/mol K × 1 mol / 4 g)

= 24.88 molT = (24.88 mol × 0.0821 L atm/mol K) / 50

= 0.04111 K or 41.11 °C.

Therefore, the temperature of helium gas confined in a two Litre flask under a pressure of 2.05 atm is approximately 41.11 °C.

To learn more about temperature; https://brainly.com/question/25677592

#SPJ11

if molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy which molecule will be moving the fastest? a) hydrogen b) nitrogen c) oxygen d) chlorine e) all molecules will have the same speed.

Answers

The answer to the question is "e) all molecules will have the same speed." This is because all molecules, regardless of what elements they are made up of, have the same kinetic energy, so they will be moving at the same speed.

To better understand this concept, it is important to note that kinetic energy is the energy of an object due to its motion. Kinetic energy is determined by the mass and speed of the object, with the equation being KE = 1/2 x m x v^2 (where m is the mass and v is the velocity). So, if two objects have the same kinetic energy, they must have the same velocity, regardless of their mass.

As all molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy, they must also have the same velocity, meaning that all molecules will be moving at the same speed. This is because the molecules' masses differ, but as the kinetic energy is the same, the velocity must be the same as well.

It is also important to note that kinetic energy is not the same as momentum. Momentum is determined by the mass and velocity of an object, but is not dependent on the kinetic energy of the object. So, while all molecules of hydrogen, nitrogen, oxygen and chlorine have the same kinetic energy, they may still have different momentum, due to their different masses.

In conclusion, all molecules of hydrogen, nitrogen, oxygen and chlorine will have the same speed, as they all have the same kinetic energy.



Learn more about Kinetic energy here:

https://brainly.com/question/15764612#

#SPJ11

How many formula units are contained in 0. 67 grams of CaO?

Answers

There are approximately 7.15 x 10^21 formula units of CaO present in 0.67 grams of CaO.

Calculate the molar mass of CaO, which is the sum of the atomic masses of calcium and oxygen,

Molar mass of CaO = (1 x atomic mass of Ca) + (1 x atomic mass of O)

Molar mass of CaO = 56.08 g/mol

Convert the given mass of CaO to moles using the molar mass,

Moles of CaO = Mass of CaO / Molar mass of CaO

Moles of CaO = 0.0119 mol

Use Avogadro's number to convert moles of CaO to formula units,

Formula units of CaO = Moles of CaO x Avogadro's number

Formula units of CaO = 0.0119 mol x 6.022 x 10^23 formula units/mol

Formula units of CaO = 7.15 x 10^21 formula units

To know more about formula units, here

brainly.com/question/20704685

#SPJ4

if 7.66 g of cuno3 is dissolved in water to make a 0.140 m solution, what is the volume of the solution in milliliters?

Answers

The volume of the solution in milliliters is 547.13 mL.

How to calculate the volume of the solution in milliliters?

The molarity of the solution is given by;

Molarity = Number of moles of solute / Volume of solution in liters

Using the above formula, we can calculate the volume of the solution as;

Volume of solution in liters = Number of moles of solute / Molarity

Number of moles of CuNO3 can be determined as follows:

Number of moles = Given mass of the substance / Molar mass of the substance

= 7.66 g / (Cu: 63.55 g/mol + N: 14.01 g/mol + 3O: 3 x 16 g/mol)

= 0.05 mol

Substituting the values of molarity and number of moles of CuNO3 in the formula of volume of solution, we get:

Volume of solution in liters = Number of moles of solute / Molarity

= 0.05 mol / 0.140 M = 0.357 L

Converting the volume in liters to milliliters;

Volume in milliliters = Volume in liters × 1000

= 0.357 L × 1000= 357 mL

Thus, the volume of the solution in milliliters is 357 mL.



Learn more about volume of the solution here:

https://brainly.com/question/14710169#


#SPJ11

ethyl benzene is treated with (i) br2 and febr3 and (ii) br2 and light or heat separately. do you think the products will be same? justify your answer.

Answers

No, the products obtained from the reaction of ethylbenzene with [tex]Br_2[/tex] and [tex]FeBr_3[/tex] in the presence of light or heat will be different from the products obtained from the reaction of ethylbenzene with [tex]Br_2[/tex] / light or heat.

In the first reaction, [tex]Br_2[/tex] and [tex]FeBr_3[/tex] act as a source of electrophilic bromine, which attacks the aromatic ring of ethylbenzene, leading to the formation of 1-bromoethylbenzene. The mechanism for this reaction is an electrophilic aromatic substitution, where the electrophilic [tex]Br^+[/tex] ion is generated in situ by the reaction of [tex]Br_2[/tex] with [tex]FeBr_3[/tex].

In the second reaction, [tex]Br_2[/tex] acts as a source of free radical bromine, which undergoes a free radical substitution reaction with ethylbenzene, leading to the formation of 1,2-dibromoethylbenzene. This reaction proceeds through a free radical mechanism, where the [tex]Br_2[/tex] molecule is split into two free radicals by the action of light or heat.

Therefore, the products obtained from the two reactions will be different. In the first reaction, 1-bromoethylbenzene will be formed, while in the second reaction, 1,2-dibromoethylbenzene will be formed.

To learn more about Electrophilic aromatic substitution refer to the link: https://brainly.com/question/14908357

#SPJ11

a) select the best set of reagents for the transformation. an alkene bonded to a tert butyl group and three hydrogens is transformed to a tert butyl group bonded to c h 2 c h 2 o h. the best reagents are:

Answers

To transform an alkene bonded to a tert-butyl group and three hydrogens to a tert-butyl group bonded to CH2CH2OH, the best reagents are H2SO4 and H2O.

H2SO4 is used to protonate the double bond and form a carbocation, which can then undergo nucleophilic attack by water to form the final product. This reaction is known as hydration of alkenes.To perform the transformation, the alkene is first protonated with H2SO4 to form a carbocation intermediate.

Water acts as a nucleophile and attacks the carbocation to form the alcohol product. This reaction is shown below:Thus, the final product formed is tert-butyl group bonded to CH2CH2OH.Another way to perform this transformation is by using oxymercuration-demercuration.

In this reaction, the alkene is first treated with mercuric acetate and water to form a cyclic intermediate.

Know more about nucleophile here:

https://brainly.com/question/27127109

#SPJ11

Which of these is not a component of Rutherford’s model of the atom?

Answers

The Rutherford's model lacks an atom's electrical structure and electromagnetic radiation.

What elements make up Rutherford's atomic model?

According to the idea, an atom has a tiny, compact, positively charged center called a nucleus, where almost all of the mass is concentrated, while light, negatively charged particles called Like planets circle the Sun, electrons also travel a great distance around it. Rutherford discovered that an atom's interior is mostly empty.

What does Rutherford's conclusion leave out?

Rutherford's alpha scattering experiment did not come to any conclusions on how quickly positively charged particles travel. The nucleus, or core, of the atom contains the positively charged particles.

To know more about Rutherford's model visit:-

https://brainly.com/question/11749615

#SPJ1

a student titrates a 25 ml of an unknown concentration of hcl with 35 ml of a 0.890 m solution of koh toreach the equivalence point. what is the ph of the unknown hcl solution?

Answers

In order to determine the pH of the unknown HCl solution, a titration calculation must be performed and the pH is 0.903.

The process of adding a standard solution to another solution with the aim of determining the concentration of the second solution is known as titration. HCl is a strong acid, while KOH is a strong base, which implies that when they react, their equivalence point is pH 7.  The pH scale is used to measure the acidity or basicity of a solution. pH is defined as the negative logarithm of the hydrogen ion concentration of a solution. pH is a measure of the acidity or basicity of a solution. It is a dimensionless value that ranges from 0 to 14.

1. Before the titration of the HCl solution with the KOH solution,

Let's calculate the number of moles of KOH using the formula given below:

Number of moles of KOH = concentration of KOH × volume of KOH solution

Number of moles of KOH = 0.890 M × 0.035 L

                                          = 0.03115 mol

We now convert moles of KOH to moles of HCl to find the concentration of HCl using the equation given below:

Moles of KOH = Moles of HCl

0.03115 mol KOH = Moles of HCl

25 mL of HCl = 0.025 L of HCl

Therefore, the concentration of HCl = 0.03115 mol / 0.025 L

                                                            = 1.246 M

We have now found the concentration of the HCl solution to be 1.246 M.

2. To find the pH of HCl, let's first recall that the concentration of H+ ions in a solution of a strong acid is equal to its concentration.

Since HCl is a strong acid, its pH can be found using the formula:

pH = -log[H+]

pH = -log[1.246]

pH = 0.903

Hence, the pH of the unknown HCl solution is 0.903.

Learn more about pH: https://brainly.com/question/172153

#SPJ11

the given carboxylic acid is reduced via reaction with excess lithium aluminum deuteride. assume that the appropriate acidic workup is performed following this reduction. the final product(s) would best be described as:

Answers

The given carboxylic acid is reduced via reaction with excess lithium aluminum deuteride. The appropriate acidic workup is performed following this reduction. The final product(s) would best be described as an alcohol.

Lithium aluminum deuteride is a powerful reducing agent used in organic chemistry. Lithium aluminum deuteride is an odorless, white crystalline powder that is soluble in tetrahydrofuran (THF) and diethyl ether (Et2O). It is often utilized as a source of deuterium. When heated, it emits hydrogen and deuterium. Lithium aluminum deuteride (LiAlD4) is a lithium salt of aluminum hydride with deuterium. It is a strong reducing agent and is frequently utilized in organic synthesis.

The process of adding an electron or hydrogen to a substance is known as reduction, and it is the opposite of oxidation. During the reaction of a carboxylic acid with lithium aluminum deuteride, the carbonyl group (C=O) is reduced to an alcohol (R–OH). Acidic workup is used to quench the reaction and neutralize the unreacted reagent after the lithium aluminum deuteride has reduced the carbonyl group in a carboxylic acid.

Carboxylic acids are a class of organic compounds with a carboxyl functional group that consists of a carbonyl group and a hydroxyl group. Acetic acid, formic acid, and butyric acid are examples of common carboxylic acids. The formula R–COOH is used to represent them. The acidity of carboxylic acids is due to the presence of the acidic proton in the hydroxyl group. The hydrogen ion, H+, is generated when the proton is dissociated.

Learn more about reduction at:

https://brainly.com/question/30451902

#SPJ11

calculate the heat released when 30.0 g of so2(g) reacts with 20.0 g of o2(g), assuming the reaction goes to completion.

Answers

The heat released when 30.0 g of [tex]SO_{2}[/tex](g) reacts with 20.0 g of [tex]O_{2}[/tex](g) is 184.8 kJ.

To calculate the heat released when 30.0 g of [tex]SO_{2}[/tex](g) reacts with 20.0 g of [tex]O_{2}[/tex](g), we first need to determine the balanced chemical equation for the reaction:
[tex]SO_{2} (g) + 1/2 O_{2}(g)[/tex]  →  [tex]SO_{3}(g)[/tex]
Now, we need to find the limiting reactant. First, let's calculate the moles of each reactant:

moles of [tex]SO_{2}[/tex] = mass of [tex]SO_{2}[/tex] / molar mass of [tex]SO_{2}[/tex]
moles of [tex]SO_{2}[/tex] = 30.0 g / (32.1 g/mol + 32.0 g/mol) = 0.468 moles

moles of [tex]O_{2}[/tex] = mass of [tex]O_{2}[/tex] / molar mass of [tex]O_{2}[/tex]
moles of [tex]O_{2}[/tex] = 20.0 g / 32.0 g/mol = 0.625 moles

Now, we'll find the mole ratio:

mole ratio = moles of [tex]O_{2}[/tex] / (1/2 * moles of [tex]SO_{2}[/tex])
mole ratio = 0.625 / (1/2 * 0.468) = 2.67

Since the mole ratio is greater than 1, [tex]SO_{2}[/tex] is the limiting reactant.

Now, we need to find the heat released. The standard enthalpy change of the reaction (ΔH°) for the formation of [tex]SO_{3}[/tex] is -395.2 kJ/mol. Therefore, the heat released can be calculated as follows:

heat released = moles of limiting reactant * ΔH°
heat released = 0.468 moles * -395.2 kJ/mol = -184.8 kJ

So, the heat released when 30.0 g of [tex]SO_{2}[/tex](g) reacts with 20.0 g of [tex]O_{2}[/tex](g) is 184.8 kJ.

To learn more about heat released; https://brainly.com/question/22862842

#SPJ11

a 250.ml sample of oxygen gas is collected over water at 25oc and 760.0 torr pressure. what is the pressure of the dry gas alone? (vapor pressure of water at 25oc is 23.8torr)

Answers

The pressure of the dry gas alone can be calculated using the ideal gas law: PV = nRT and the pressure is  736.2 torr.

The pressure of dry gas alone is 736.2 torr. Step-by-step explanation: Given that, the Volume of oxygen gas = 250 ml. Temperature = 25 oC Pressure = 760 torr, Vapor pressure of water at 25 oC = 23.8 torrTo find: The pressure of the dry gas alone.

Formula used,V2 = (P1 - P2) * (V1 - Vw) / P2Where,V2 = Volume of gas aloneP1 = Pressure of gas collectedP2 = Vapor pressure of water at temperature T1V1 = Volume of gas collected Vw = Volume of water vapor formedCalculation,P1 = 760 torrP2 = 23.8 torrV1 = 250 mlVw = V1 * P2 / P1= 250 * 23.8 / 760= 7.84 mlV2 = (P1 - P2) * (V1 - Vw) / P2= (760 - 23.8) * (250 - 7.84) / 760= 231.82 mlPressure of dry gas alone = P1 * V2 / V1= 760 * 231.82 / 250= 736.2 torr.

Hence, the pressure of the dry gas alone is 736.2 torr.

Read more about torr:

https://brainly.com/question/14797048

#SPJ11

a sample of neon has a volume of 40.81 m3 at 23.5c. at what temperature, in kelvins, would the gas occupy 50.00 cubic meters? assume pressure is constant. a. 363.27 k b. 230.54 k c. 242.0 k d. 28.79 k

Answers

At the temperatute of  363.27 K the sample of the gas Neon would occupy a volume of 50.00 cubic meters. Therefore option A can be considered correct.

Using  the combined gas law in order to solve this problem

(P₁V₁)/T₁ = (P₂V₂)/T₂

( P is the pressure, V is the volume, and T is the temperature)

Since the pressure is constant, we can simplify the equation to:

V₁/T₁ = V₂/T₂

After inserting the values given in the problem equation,

V₁ = 40.81 m³

T₁ = 23.5°C + 273.15 = 296.65 K

V₂ = 50.00 m³

We can solve for    T₂= (V₂/V₁) × T₁

T₂ = (50.00/40.81) × 296.65

T₂ = 363.27 K

Hnce, the temperature in kelvins  at which the gas would occupy the volume of  50.00 cubic meters is calculated out to be 363.27 K.

Learn more about Gas Law :

https://brainly.com/question/27009857

#SPJ4

How many atoms are in 32.10 g of He

Answers

Taking into account the definition of Avogadro's Number, 4.83×10²⁴ atoms of He are in 32.10 g of He.

Definition of molar mass

The molar mass of substance is a property defined as the amount of mass that a substance contains in one mole.

Definition of Avogadro's Number

Avogadro's Number is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole.

Its value is 6.023×10²³ particles per mole.

Amount of moles of 32.10 g of He

The molar mass of He is 4 g/mole. You can apply the following rule of three: If by definition of molar mass 4 grams of He are contained in 1 mole of He, 32.10 grams of He are contained in how many moles?

moles= (32.10 grams × 1 mole)÷ 4 grams

moles= 8.025 moles

The amount of moles of He in 32.19 grams is 8.025 moles.

Amount of atoms of 32.10 g of He

You can apply the following rule of three: If by definition of Avogadro's Number 1 mole of He contains 6.023×10²³ atoms, 8.025 moles of He contains how many atoms?

amount of atoms of He= (8.025 moles × 6.023×10²³ atoms)÷ 1 mole

amount of atoms of He= 4.83×10²⁴ atoms

Finally, 4.83×10²⁴ atoms of He are present.

Learn more about Avogadro's Number:

brainly.com/question/11907018

#SPJ1

2.37-l container is filled with 186 g argon. (a) if the pressure is 10.0 atm, what is the temperature? webassign will check your answer for the correct number of significant figures. k (b) if the temperature is 225 k, what is the pressure?

Answers

(a) If the pressure is 10.0 atm, the temperature is 62.0 K.

(b) if the temperature is 225 k, the pressure is 36.3 atm.

a) In order to calculate the temperature, we need to use the ideal gas law, PV = nRT, where P is the pressure, V is the volume of the container, n is the number of moles of argon, R is the ideal gas constant, and T is the temperature.

We can calculate the number of moles, n, by using the molar mass of argon, which is 39.948 g/mol.

We have n = 186 g / 39.948 g/mol = 4.656 mol.

So we can plug in our values and solve for T:

T = (10.0 atm)(2.37 L) / (4.666 mol)(0.08206 L·atm/mol·K) = 62.0 K.

b) To calculate the pressure, we can again use the ideal gas law, PV = nRT. We know the values of n, R, and T from the previous question.

Since the volume of the container is given, we can plug in these values to solve for P:

P = (4.666 mol)(0.08206 L·atm/mol·K)(225 K) / 2.37 L = 36.3 atm.

Learn more about ideal gas law here: https://brainly.com/question/27870704.

#SPJ11

explain why oxygen forms 2 bonds to hydrogen to make a water molecule, while nitrogen forms 3 bonds to make a molecule of ammonia

Answers

Oxygen and nitrogen are both nonmetals, meaning they form covalent bonds when they react.

Oxygen forms two covalent bonds with hydrogen because it has six valence electrons and needs two more electrons to complete its octet. Nitrogen has five valence electrons and needs three more electrons to complete its octet, so it forms three covalent bonds with hydrogen. The chemical formula for a water molecule is H2O, meaning that two hydrogen atoms are bonded to one oxygen atom. The chemical formula for ammonia is NH3, meaning that three hydrogen atoms are bonded to one nitrogen atom. The bond between hydrogen and oxygen is a polar covalent bond, while the bond between hydrogen and nitrogen is a non-polar covalent bond. This is due to the difference in electronegativity between oxygen and nitrogen, which causes oxygen to be more electronegative than nitrogen.

To know more about electronegativity click on below link :

https://brainly.com/question/17762711#

#SPJ11

assume that the equilibrium represented around point (a) in the titration can generically be described as

Answers

The pH at which the ratio of [HA₂⁻] to [H₂A⁻] is 25:1 is 11.1.

Titration is a technique used to determine the concentration of a solution by reacting it with a standardized solution. This process can be used to determine the acidity or basicity of a solution.

Assume that the equilibrium represented around point (A) in the titration can generically be described as:

                         H₃A + OH⁻ → H₂A⁻ + HOH

Ka₁ = 6.76 x 10⁻³

Ka₂ = 9.12 x 10⁻¹⁰

There are three stages to the titration curve. The first stage corresponds to the point at which there is an excess of strong base, and the pH changes rapidly with each addition of base. The second stage corresponds to the buffer region, and the pH changes only slightly with each addition of base. Finally, the third stage corresponds to the point at which the excess base is equal to the amount of acid present in the solution, and the pH changes rapidly once again.

In the equation H₃A + OH⁻ → H₂A⁻ + HOH the first dissociation constant, Ka₁, is equal to

[ H₂A⁻ ][H⁺]/[H₃A]

The second dissociation constant, Ka₂, is equal to

[H₃A⁻ ][OH⁻ ]/[H₂A⁻ ]

Let's assume that the equilibrium is initially set up at pH pKa₁, such that [H₃A] = [H₂A⁻ ].

The pH of the solution at equilibrium will be equal to pKa₁.

Let's suppose that a strong base is added to the solution, and the amount of [OH⁻ ] added is x.

As a result, [H₃A] and [H₂A⁻ ] will be reduced by x, while [HA₂⁻] will be increased by x.

[H₃A] = [HA₂⁻] = [H+];

[OH⁻] = x;

[HA₂⁻] = [OH⁻-];

[H₃A] - x;

[H₂A⁻] - x

We can then calculate the concentration of each species using the expression for the acid dissociation constant:

[H₃A] = [H2A⁻] = [H+];

[OH⁻] = x;

[HA₂⁻] = [OH⁻];

[H₃A] - x;

[H₂A-] - x

Ka₁ = [H₂A⁻][H+]/[H₃A]

Ka₁ = x^2 / ([H+]-x)

Ka₂ = [HA₂⁻][OH⁻]/[H₂A⁻]

Ka₂ = [x][x] / ([H+]-x)

Ka₂= x²/([H+]-x) = 25

Ka₁ is used to calculate [H+]

Ka₂ is used to calculate:

Ka₂ [HA₂⁻] / [H₂A⁻][H+] = 2.06 x 10⁻⁶,

pH = 5.68

[H₂A⁻] / [HA₂⁻] = 0.04,

[HA₂⁻] = [HA₂⁻] * 25 = 1.00 x 10⁻⁴

[OH-] = Ka₂ [H₂A-] / [HA₂⁻] = 9.12 x 10⁻¹⁰ * [H₂A⁻] / [HA₂⁻] = 2.28 x 10⁻¹⁴

pOH = 13.64

pH = 11.1

Therefore, at pH 11.1, the ratio of [HA₂⁻] to [H₂A⁻] is 25:1.

Learn more about titration at https://brainly.com/question/186765

#SPJ11

5. based on the tolerance table for volumetric glassware, the volume of a 25 ml volumetric pipet and volumetric flask is understood to be

Answers

The volume of a 25 ml volumetric pipet and volumetric flask is understood to be 25.00 mL ± 0.06 mL according to the tolerance table for volumetric glassware.

Explanation: Based on the tolerance table for volumetric glassware, the volume of a 25 ml volumetric pipet and volumetric flask is understood to be±0.03 mL.What is Volumetric Glassware?Volumetric glassware is laboratory equipment that measures precise volumes of liquids. Volumetric glassware is used in a variety of laboratory settings, including analytical chemistry and clinical chemistry. Volumetric glassware is designed to measure liquids accurately, but it is only accurate if it is used correctly.What is the Tolerance Table?A tolerance table is a table of values that specifies the maximum deviation of a specific measuring device from the true value. The tolerance is the range of allowable deviations that are accepted. Tolerance, expressed in terms of volume, is determined by testing and comparing the volume measurements of each piece of volumetric glassware to a reference standard.How is the Tolerance Table for Volumetric Glassware Used?The tolerance table for volumetric glassware is used to determine the allowable variation from the true value of the liquid in the vessel. The tolerance table provides the range of possible values that are considered acceptable. This range is determined by testing the volumetric glassware against a reference standard in a controlled environment. The allowable error for each type of volumetric glassware is specified in the tolerance table. The tolerances are typically expressed in terms of volume in milliliters. For example, a 25 mL volumetric pipet may have a tolerance of ±0.03 mL.

For more such questions on Volumetric flask

https://brainly.com/question/17053656

#SPJ11

an ionic equation shows species _______ in solution. this equation is the ________ accurate representation of the chemical change occurring.

Answers

An ionic equation shows species dissolved in solution. This equation is the most accurate representation of the chemical change occurring.

What is an ionic equation? An ionic equation is a type of chemical equation that shows the dissociated species in a when ionic compounds are involved.                                                                                               Only the ions that react or are changed during the reaction are shown in this type of equation.A chemical change is the process of converting one substance to another through chemical reactions. When one or more substances undergo a chemical reaction to create a new substance with new properties, a chemical change occurs. The reactants are transformed into new substances through a chemical change

Learn more about ionic equations here, https://brainly.com/question/28193640

#SPJ11

For another researcher's data the starting mass of apparatus + solid was 113.249 g. After the reaction was complete the apparatus was reweighed. The resulting mass was 113.276 g. Which of the following could have caused the mass gain?
Select all that apply
Group of answer choices
The apparatus had a gas leak and room air could enter the apparatus.
The apparatus picked up extra water droplets between weighings
They forgot to weigh the mass of the gas-generating solid before the reaction.
Matter was created in the reaction.

Answers

The mass gain that happened after the reaction could have been caused due to the matter was created in the reaction .  

What is mass gain?

In physics, mass gain refers to an increase in mass in a chemical or nuclear reaction. It is the difference between the mass of the reactants and the mass of the products after a chemical reaction has occurred.

What happened in the given problem?

According to the given problem, the starting mass of the apparatus and solid was 113.249 g. After the reaction was complete, the apparatus was reweighed. The resulting mass was 113.276 g. The problem asks which of the following could have caused the mass gain.

The mass gain could have been caused by the following:

They forgot to weigh the mass of the gas-generating solid before the reaction

The apparatus picked up extra water droplets between weighing's.

Matter was created in the reaction.

The apparatus picked up extra water droplets between weighings, but they forgot to weigh the mass of the gas-generating solid before the reaction, and matter was created in the reaction.

To know more about the mass https://brainly.com/question/19694949

#SPJ11

how many moles of aspirin, c9h8o4, are in a tablet that contains 325 mg of aspirin? group of answer choices 0.555 moles 0.467 moles 0.357 moles 2.80 moles 0.00180 moles

Answers

The number of moles of aspirin, C₉H₈O₄, there are in a tablet that contains 325 mg of aspirin 0.00180 moles.

To calculate the number of moles of aspirin, the molar mass must first be determined. The molar mass of aspirin (C₉H₈O₄) is the sum of the atomic masses of each element in the compound, which are carbon (12.0107 g/mol), hydrogen (1.00794 g/mol), and oxygen (15.9994 g/mol). The total molar mass of aspirin is:

(9 x 12.0107) + (8 × 1.00794) + (4 × 15.9994) = 180.15 g/mol.

The number of moles of aspirin in a 325 mg tablet can be calculated by dividing its mass, 325 mg (0.325 g), by the molar mass of aspirin.

moles = mass/molar mass

Plugging in the values, we get:

moles = 325 mg(1 g/1000mg) / (180.15 g/mol) = 0.00180 moles

In conclusion, there are 0.00180 moles of aspirin, C₉H₈O₄, in a tablet that contains 325 mg of aspirin.

Learn more about moles here: https://brainly.com/question/14357742.

#SPJ11

write the balanced chemical equation for the gas-phase production of ammonia from elemental nitrogen and hydrogen

Answers

The balanced chemical equation for the gas-phase production of ammonia from elemental nitrogen and hydrogen is:

N2 + 3H2 → 2NH3

This equation represents the reaction of nitrogen molecules, N2, with hydrogen molecules, H2, to form ammonia molecules, NH3. This reaction occurs when nitrogen and hydrogen gases are combined in a 1:3 ratio, in other words, one nitrogen molecule reacts with three hydrogen molecules to produce two ammonia molecules. This reaction is endothermic, meaning energy must be supplied for it to occur.

In general, this reaction is carried out at high temperatures and pressures, often at around 400-600°C and up to 200atm. A catalyst is usually also used, usually iron, to speed up the reaction. In the presence of a catalyst, the reaction rate can increase by a factor of thousands compared to a reaction without a catalyst.

Overall, the balanced chemical equation for the gas-phase production of ammonia from elemental nitrogen and hydrogen is:

N2 + 3H2 → 2NH3

To know more about catalyst click on below link :

https://brainly.com/question/24430084#

#SPJ11

the temperature of a constant volume of gas at 1.00 atm is 25 oc. in order to increase the pressure to 2.00 atm, what temperature is needed?

Answers

Answer: 323 degrees Celsius :)

Explanation:

at a party, 6.00 kg of ice at -5.00oc is added to a cooler holding 30.0 liters of water at 20.0oc. what is the temperature of the water when it comes to equilibrium?

Answers

The temperature of the water when it comes to equilibrium is 69.48°C.

Firstly, the heat lost by ice is equal to the heat gained by water. This is because the process of melting of ice requires heat energy, and this heat energy will be absorbed from the water present in the cooler.

Let us find out the heat lost by ice. The specific heat of ice is 2.05 J/g·°C, and the heat of fusion of ice is 334 J/g. Heat lost by ice can be given as:

q1 = mass of ice × specific heat of ice × (final temperature - initial temperature) + mass of ice × heat of fusion

q1 = 6.00 × 10^3 g × 2.05 J/g·°C × (0 - (-5)) + 6.00 × 10^3 g × 334 J/g

= 6.00 × 10^3 g × 10.25 J/g·°C + 2.00 × 10^6 J

= 6.15 × 10^4 J + 2.00 × 10^6 J

= 2.06 × 10^6 J

Heat gained by water can be given as:

q2 = mass of water × specific heat of water × (final temperature - initial temperature)

q2 = 30.0 kg × 4.18 J/g·°C × (final temperature - 20.0°C) = 1254 J/kg·°C × (final temperature - 20.0°C)

Since q1 = q2,

we have: 6.15 × 10^4 J + 2.00 × 10^6 J

= 1254 J/kg·°C × (final temperature - 20.0°C)6.21 × 10^4 J

= 1254 J/kg·°C × (final temperature - 20.0°C)

final temperature - 20.0°C = 6.21 × 10^4 J / (1254 J/kg·°C)

final temperature - 20.0°C = 49.48°C

final temperature = 49.48°C + 20.0°C = 69.48°C

Hence, the temperature of the water when it comes to equilibrium is 69.48°C.

To know more about equilibrium, refer here:

https://brainly.com/question/30807709#

#SPJ4

the sodium atom loses 1 electrons when it reacts with something. the electron configuration of the sodium ion is the same as the electron configuration of

Answers

The sodium atom loses 1 electron when it reacts with something. The electron configuration of the sodium ion is the same as the electron configuration of the noble gas neon.

An electron is a negatively charged subatomic particle that orbits the nucleus of an atom.

The electrons that orbit the nucleus of an atom are arranged in shells, which are concentric circles around the nucleus, in what is known as the electron configuration. Electron configuration is the arrangement of electrons in the orbitals of an atom or molecule in its ground state.

Sodium is a chemical element with the symbol Na and atomic number 11.

Sodium is a soft, silvery-white metal that is extremely reactive.

Sodium readily loses one electron to form a positively charged ion, and it is this characteristic that makes it an important component of many compounds.

In a neutral atom, a sodium atom has eleven electrons, with the electron configuration being 1s²2s²2p⁶3s¹.

When a sodium atom loses an electron, it becomes a positively charged sodium ion with a 1+ charge.

When a sodium atom loses an electron, the electron configuration of the sodium ion is the same as that of the noble gas neon. Therefore, the electron configuration of a sodium ion is 1s²2s²2p⁶.

Learn more about electron configuration: https://brainly.com/question/26084288

#SPJ11

Other Questions
the admission fee at an amusement park is $4.25 for children and $7.00 for adults. on a certain day, 303 people entered the park, and the admission fees collected totaled 1824 dollars. how many children and how many adults were admitted? The Quantum Theory Model seems to contradict one the above scientist's hypothesis. Who is it and why? Is there more than one? I'm completely stuck on 2.19.5 simple math. Any help? codehs The sum of 4 and 6 is: the well-run organization strives for compensation that treats similar positions equitably and that is competitive with similar employment elsewhere. why? are you sure you agree? if you have doubts, what are the alternatives? which of the following is not a function of the sympathetic nervous system? question 3 options: a) dilation of blood vessels in the muscles b) constriction of blood vessels in the muscles c) increases in the heart and respiratory rates d) constriction of blood vessels in the digestive system what is the 1ooth digit to the right of the decimal point in the decimal representation of (1 .fi.)3000 ? For a certain type of plant, the gene for red flower color is dominant whilethe gene for yellow flower color is recessive. Two plants with red flowersproduce an offspring with yellow flowers. Which best describes the genesof the parent plants?O both parents carry one recessive geneOneither parents carry a recessive geneO one parent carries two recessive genes, but the other does notone parent carries the recessive gene, but the other does not what are the major determinants of price elasticity of demand? instructions: in order to receive full credit, you must make a selection for each option. for correct answer(s), click the box once to place a check mark. for incorrect answer(s), click the option twice to empty the box. rebeya is setting goals with the executive team of her organization. these goals include financial and productivity goals, as well as environmental and sustainability goals. which type of goals is rebeya establishing? Can someone pls help me with this the process mean can be adjusted through calibration. to what value should the mean be adjusted so that 99% of the cans will contain 12 oz or more? who of the following is most likely to abuse alcohol? group of answer choices bryson, who is european american james, who is african america miko, who is asian american juan, who is hispanic american what will you use to prepare the calibration curve in this project? group of answer choices a solvent blank. a series of solutions with the exact same analyte concentration. a series of solutions with various unknown analyte concentrations. a series of solutions with a range of precisely known analyte concentrations. casey majored in marketing and really enjoyed studying market research as a subject. through research on the internet and in the university library, she discovers that this industry appears to have significant positive trends in employment. she interprets this as a(n) . given the following exponential function, identify whether the change represents growth or decay and determine the percentage rate of increase or decrease y=620(0.941)x HELPP the test is due at the end of class the regeneration of rubp typically limits the rate of photosynthesis under low light intensities. this is because: Which of the following shows an example of two irrational numbers being multiplied to get a rational number?Responses39052 823 there are three mechanistic steps of an aldol addition reaction: (1) deprotonation, (2) nucleophilic attack, (3) protonation. 1. social workers a) undergo training that places heavy emphasis on research methods and psychological testing. b) typically earn a doctoral degree. c) all of the above d) none of the above