Write the slope-intercept form of the equation of each line.4) -3+y=2/5x

Answers

Answer 1
[tex]y=\frac{2}{5}x+3[/tex]

where

[tex]\begin{gathered} \text{slope}=\frac{2}{5} \\ y-\text{intercept}=3 \end{gathered}[/tex]

Explanation

the equation of a line in slope-intercept form is given by:

[tex]\begin{gathered} y=mx+b \\ \text{where} \\ m\text{ is the slope} \\ b\text{ is the y-intercept} \end{gathered}[/tex]

Step 1

then, isolate y

[tex]-3+y=\frac{2}{5}x[/tex]

i) add 3 in both sides

[tex]\begin{gathered} -3+y=\frac{2}{5}x \\ -3+y+3=\frac{2}{5}x+3 \\ y=\frac{2}{5}x+3 \end{gathered}[/tex]

Hence, the answer is

[tex]y=\frac{2}{5}x+3[/tex]

where

slope=2/5

y-intercept=3

I hope this helps you


Related Questions

The total fixed costs of producing a product is $55,000 and the variable cost is $190 per item. If the company believes they can sell 2,500 items at $245 each, what is thebreak-even point?800 items900 items960 items 1,000 itemsNone of these choices are correct.

Answers

Let's call FC the fixed cost for production and VC the variable cost per item.

The company believes they can sell 2,500 items at $245 each.

Production costs:

For producing 2,500 items, the company has to spend (total cost, TC):

[tex]\begin{gathered} TC=FC+2,500\cdot VC \\ TC=55,000+2,500\cdot190 \\ TC=530,000 \end{gathered}[/tex]

Sells:

Now, company sells eacho of the 2,500 items at $245, so, the company income (I) is:

[tex]I=245\cdot x[/tex]

where x is the number of items sold.

Break-even point:

This point is reached when company can recover the money they spend (TC). So, we have the following eaquation to solve:

[tex]\begin{gathered} TC\text{ = I} \\ \to530,000=245\cdot x \\ \to x=\frac{530,000}{245}\text{ =2,163.3 (rounded) } \end{gathered}[/tex]

Since company can not sell fractions of items, they have to sell 2,164 items to take back the money they invested.

So, "None of these choices are correct".

Let's find2. 1+5 3First write the addition with a common denominator.Then add.12— +51-4-13Х5

Answers

Answer:[tex]\frac{2}{5}+\frac{1}{3}=\frac{6}{15}+\frac{5}{15}=\frac{11}{15}[/tex]Explanation:

The given addition exercise is:

[tex]\frac{2}{5}+\frac{1}{3}[/tex]

The LCM of the denominator (5 and 3) = 15

Multiply 2/5 by 3/3

[tex]\frac{2}{5}=\frac{2\times3}{5\times3}=\frac{6}{15}[/tex]

Multiply 1/3 by 5/5

[tex]\frac{1}{3}=\frac{1\times5}{3\times5}=\frac{5}{15}[/tex]

The addition becomes

[tex]\frac{6}{15}+\frac{5}{15}=\frac{11}{15}[/tex]

Therefore, we can fill in the vacant boxes as shown below:

[tex]\frac{2}{5}+\frac{1}{3}=\frac{6}{15}+\frac{5}{15}=\frac{11}{15}[/tex]

Ary is writing thank you cards to everyone who came to her wedding. It takes her of an hour to write one thank you card. If it took her 8 hours to finish writing all of the cards, how many thank you cards did she write? 48 thank you cards 36 thank you cards 46 thank you cards 40 thank you cards

Answers

The question doesn't specify which fraction of an hour it takes Ary to write a thank you card.

Let's imagine that it takes her 1/4 of an hour to write a thank you card.

In such case, in one hour she will be able to write 4 thank you cards.

and therefore in 8 hours, ishe will be able to write 32 thank you cards (8 times 4 cards).

If it takes her 1/6 of an hour to write a thank you card, then in hone hour she will write a total of 6 thank you cards, and therefore, in 8 hours she will be able to write 8 times 6 thank you cards: 8 x 6 = 48 thank you cards.

If it takes her 1/5 of an hour to write a thank you card, then in hone hour she will write a total of 5 thank you cards, and therefore, in 8 hours she will be able to write 8 times 5 thank you cards: 8 x 5 = 40 thank you cards.

You just use this type of criteria to solve the problem whatever the fraction of the hour it takes to write one card as they specify in the question.

Solve. 4 + x/7 = 2Question 3 options:12-144210

Answers

[tex]x=-14[/tex]

1) Since we have a Rational Equation let's proceed with that, isolating the x on one side and then we can get rid of that fraction. This way:

[tex]\begin{gathered} 4+\frac{x}{7}=2 \\ 4-4+\frac{x}{7}=2-4 \\ \frac{x}{7}=-2 \end{gathered}[/tex]

Notice that now, we're going to get rid of that fraction on the left side, multiplying it by 7 (both sides) :

[tex]\begin{gathered} 7\times\frac{x}{7}=-2\times7 \\ x=-14 \end{gathered}[/tex]

Thus, the answer is -14

solve p(x+q)^4=r for x

Answers

Given the following equation:

[tex]p\mleft(x+q\mright)^4=r[/tex]

You can solve for the variable "x" as following:

1. You need to apply the Division property of equality by dividing both sides of the equation by "p":

[tex]\begin{gathered} \frac{p\mleft(x+q\mright)^4}{p}=\frac{r}{p} \\ \\ \mleft(x+q\mright)^4=\frac{r}{p} \end{gathered}[/tex]

2. Remember that:

[tex]\sqrt[n]{a^n}=a[/tex]

Then:

[tex]\begin{gathered} \sqrt[4]{(x+q)^4}=\sqrt[4]{\frac{r}{p}} \\ \\ x+q=\sqrt[4]{\frac{r}{p}} \end{gathered}[/tex]

3. Now you have to apply the Subtraction property of equality by subtracting "q" from both sides of the equation:

[tex]\begin{gathered} x+q-(q)=\sqrt[4]{\frac{r}{p}}-(q) \\ \\ x=\sqrt[4]{\frac{r}{p}}-q \end{gathered}[/tex]

The answer is:

[tex]x=\sqrt[4]{\frac{r}{p}}-q[/tex]

Which function, A or B, has a greater rate of change? Be sure to include the values for the rates of change in your answer. Explain your answer.

Answers

Answer:

The function B has a greater rate of change

Explanation:

Function A is represented by the table:

Selecting the points (1, 5) and (2, 7)

The rate of change of function A:

[tex]\begin{gathered} m_A=\frac{7-5}{2-1} \\ \\ m_A=2 \end{gathered}[/tex]

The rate of change of the function A = 2

Function B is represented by the graph:

(1, 1) and (2, 4)

[tex]\begin{gathered} m_B=\frac{4-1}{2-1} \\ \\ m_B=3 \end{gathered}[/tex]

The rate of change of the function B = 3

The function B has a greater rate of change

Select the sequence of transformations that will carry rectangle A onto rectangle A'. A) reflect over y-axis, rotate 90° clockwise, then reflect over x-axis B) rotate 180° clockwise, reflect over y-axis, then translate 3 units left C) rotate 180° clockwise, reflect over x-axis, then translate 2 units left D) rotate 90° clockwise, reflect over y axis, then translate 3 units left

Answers

Let:

[tex]\begin{gathered} A=(3,4) \\ B=(4,2) \\ C=(1,-1) \end{gathered}[/tex]

and:

[tex]\begin{gathered} A^{\prime}=(-3,1) \\ B^{\prime}=(-4,-1) \\ C^{\prime}=(-1,-4) \end{gathered}[/tex]

After a reflection over the y-axis:

[tex]\begin{gathered} A\to(-x,y)\to A_1=(-3,4) \\ B\to(-x,y)\to B_1=(-4,2) \\ C\to(-x,y)\to C_1=(-1,-1) \end{gathered}[/tex]

After a translation 3 units down:

[tex]\begin{gathered} A_1\to(x,y-3)\to A_2=(-3,1) \\ B_1\to(x,y-3)\to B_2=(-4,-1) \\ C_1\to(x,y-3)\to C_2=(-1,-4) \end{gathered}[/tex]

Since:

[tex]\begin{gathered} A_2=A^{\prime} \\ B_2=B^{\prime} \\ C_2=C^{\prime} \end{gathered}[/tex]

The answer is the option K.


A house casts a shadow that is 12 feet tall. A woman who is 5.5 feet tall casts a shadow that is 3 feet tall.

What is the height of the house?

A. 22 ft.
B. 55 ft.
C. 5.5 ft.
D.220 ft.

Answers

A.

To find how many feet of shadow are cast from a one foot shadow, divide 5.5 by 3. This should give you about 1.83 ft of shadow per foot. Now, multiply the 12 foot shadow by 1.83 ft to get about 22 ft.

there are 150 oranges in 10 craftes of each crate has the same amount of oranges how many oranges are in each crate?

Answers

Take the total number of oranges and divide by the number of crates

150 orange

----------------

10 crates

15 oranges per crate

jessica bought 4 gallons of paint. Jessica needed to use 3/4 of the paint to paint her living room and dining room. How many gallons did she use, write the number of gallons.

Answers

Jessica bought 4 gallons of paint. Of that, she used 3/4 to paint. So the ammount she used was

[tex]4\cdot(\frac{3}{4})=\frac{4\cdot3}{4}=3[/tex]

So she used 3 gallons of paint.

How many roots does x^2-6x+9 have ? It may help to graph the equation.

Answers

The roots are those values that make a function or polynomial take a zero value. The roots are also the intersection points with the x-axis. In the case of a quadratic equation you can use the quadratic formula to find its roots:

[tex]\begin{gathered} ax^2+bx+c=y\Rightarrow\text{ Quadratic equation in standard form} \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}\Rightarrow\text{ Quadratic formula} \end{gathered}[/tex]

So, in this case, you have

[tex]\begin{gathered} y=x^2-6x+9 \\ a=1 \\ b=-6 \\ c=9 \end{gathered}[/tex][tex]\begin{gathered} x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4(1)(9)}}{2(1)} \\ x=\frac{6\pm\sqrt[]{36-36}}{2} \\ x=\frac{6\pm0}{2} \\ x=\frac{6}{2} \\ x=3 \end{gathered}[/tex]

As you can see, this function only has one root, at x = 3.

You can see this in the graph of the function:

A certain orange colour requires mixing 5 parts of red paint with 7 parts of yellow paint.Roderick mixed 15 parts of red paint with 21 parts of yellow paint. Did he create the correct orange colour?

Answers

Answer:

Roderick has created the correct orange color.

Explanation:

The orange color required mixing 5 parts of red paint with 7 parts of yellow paint. The ratio is given below:

[tex]\operatorname{Re}d\colon\text{Yellow}=5\colon7[/tex]

Roderick mixed 15 parts of red paint with 21 parts of yellow paint. This is expressed in ratio as:

[tex]\begin{gathered} \operatorname{Re}d\colon\text{Yellow}=15\colon21 \\ \text{Divide both sides by 3} \\ \frac{15}{3}\colon\frac{21}{3}=5\colon7 \end{gathered}[/tex]

Since the two ratios reduces to the same value, they are equivalent, thus Roderick has created the correct orange color.

I need help if u need a pic of the graph I’ll take a picture of it

Answers

A.

Using the points (2,3) and (0,6) to find the slope (m), we have:

[tex]m=\frac{y2-y1}{x2-x1}=\frac{6-3}{0-2}=\frac{3}{-2}[/tex]

The slope is m= -3/2

B.

Using the points (-1, 7.5) and (1, 4.5) to find the slope (m), we have:

[tex]m=\frac{y2-y1}{x2-x1}=\frac{4.5-7.5}{1-(-1)}=\frac{-3}{1+1}=\frac{-3}{2}[/tex]

The slope is m= -3/2

C.

The slope is the same as we are finding the ratio of the vertical change to the horizontal change between two points. Since the function represents a linear equation the slope is going to be the same despite of the points you choose.

#17 - A bin contains 90 batteries (all size C). There are 30 Eveready, 24 Duracell, 20 Sony,10 Panasonic, and 6 Rayovac batteries. What is the probability that the battery selected is aDuracell?0 27.6%0 26.7%24.6%0 29.2%

Answers

According to the basic definition of probability,

[tex]\text{Probability}=\frac{\text{ No. of favorable events}}{\text{ Total no. of events}}[/tex]

Given that the bin contains total 90 batteries, out of which 24 are duracell.

So the probability that a randomly selected battery is Duracell, is calculated as,

[tex]\begin{gathered} P(\text{Duracell)}=\frac{\text{ No. of Duracell Batteries}}{\text{ Total no. of batteries}} \\ P(\text{Duracell)}=\frac{24}{90} \\ P(\text{Duracell)}\approx0.267 \\ P(\text{Duracell)}\approx26.7\text{ percent} \end{gathered}[/tex]

Thus, the probability that a randomly selected battery is Duracell, is 26.7% approximately.

Question 3 10 pts When solving an absolute value equation, such as |2x + 51 = 13, it is important to create two equations: 2x + 5= [ Select] and 2.1 + 5 = [Select ] [ Select] Resulting in z = vor [Select] Question 4 5 pts

Answers

1) Solving that absolute value equation:

|2x+5|=13 Applying the absolute value eq. property

2x +5 = 13 subtracting 5 from both sides

2x = 13-5

2x= 8 Dividing by 2

x =4

2x +5=-13 subtracting 5 from both sides

2x = -13-5

2x = -18 Dividing by 2

x= -9

Then x=4 or x =-9

2) The equations 2x +5 =13 and 2x +15= -13

Resulting in x=4 or x =-9

1) There is a proportional relationship between the number of months a person has had a streaming movie subscription and the total amount of money they have paid for the subscription. The cost for 6 months is $47.94. The point (6,47.94) is shown on the graph below. 180 160 140 120 100 cost (dollars) 80 60 (6, 47.94) 40 20 16 18 8 20 22 2. 4 6 10 12 14 time (months)

Answers

Given:

The point which describes the relationship between the months and total amount is, (6, 47.94).

a) To find the constant proportionality:

6 months =47.94

Then, for 1 month,

[tex]\frac{47.94}{6}=7.99[/tex]

Hence, the constant proportionality is $7.99.

b) The constant proportionality tells that, if the month is increased then the cost is also increased by $7.99.

c) To find the three more points and label it:

For the month, m=1, then the cost c=$7.99

For the month, m=2, then the cost c=$15.98

For the month m=3, then the cost c=$23.97

Therefore, the three points are (1, 7.99), (2,15.98) and (3, 23.97).

The graph is,

d) The relationship between the months and the cost is,

C=7.99 m

PLEASE DO IT ASAP
What is the value of the expression?
0.3(1/4 - 1) + 0.35

-0.575
-0.125
0.125
1.4
1.925

Answers

The value of the expression 0.3(1/4 - 1) + 0.35 is 0.125

The expression is

0.3(1/4 - 1) + 0.35

The expression is defined as the sentence with a minimum of two variables and at least one math operation.

Here the expression is

0.3 (1/4 - 1) + 0.35

First do the arithmetic operation in the bracket

0.3(1/4 - 1) + 0.35 = 0.3 × -0.75 + 0.35

In next step do the multiplication

0.3 × -0.75 + 0.35 = -0.225 + 0.35

Do the addition of the numbers

-0.225 + 0.35 = 0.125

Hence, the value of the expression 0.3(1/4 - 1) + 0.35 is 0.125

Learn more about arithmetic operation here

brainly.com/question/13585407

#SPJ1

Function g can be thought of as a translated (shifted) version of f(x) = x?Y Y6+5+432f7 6 5 4 3 21 2 3 4 5 6 7-2--3+-6-7Write the equation for g(x).

Answers

Answer:

g(x) = (x + 5)²

Explanation:

g is the same function f shifted 5 units to the left.

Then, if we have a function h(x) =f(x+c), h(x) is f(x) shifted c units to the left.

So, to translate f 5 units to the left, we need to replace x by (x + 5), to get:

[tex]\begin{gathered} f(x)=x^2 \\ g(x)=f(x+5) \\ g(x)=(x+5)^2 \end{gathered}[/tex]

So, the equation for g(x) is:

g(x) = (x + 5)²

3. You draw one card from a standard deck.(a) What is the probability of selecting a king or a queen? (b) What is the probability of selecting a face card or a 10? (c) What is the probability of selecting a spade or a heart? (d) What is the probability of selecting a red card or a black card?

Answers

Given:

The objective is to find,

a) The probability of selecting a king or a queen.

b) The probability of selecting a face card or a 10.

Explanation:

The total number of cards in a deck is, N = 52 cards.

a)

Out of 52 cards, the number of king cards is,

[tex]n(k)=4[/tex]

Similarly, out of 52 cards, the number of queen cards is,

[tex]n(q)=4[/tex]

Then, the probability of drawing one out of 4 king cards or one out of 4 queen cards can be calculated as,

[tex]\begin{gathered} P(E)=P(k)+P(q) \\ =\frac{n(k)}{N}+\frac{n(q)}{N} \\ =\frac{4}{52}+\frac{4}{52} \\ =\frac{8}{52} \end{gathered}[/tex]

Hence, the probsability of selecting a king or a queen is (8/52).

b)

Out of 52 cards, the number of face cards is 12.

[tex]n(f)=12[/tex]

Similarly, out of 52 cards, the number of 10 is,

[tex]n(10)=4[/tex]

Then, the probability of drawing one out of 12 face cards or one out of 4 ten cards can be calculated as,

[tex]\begin{gathered} P(E)=P(f)+P(10) \\ =\frac{12}{52}+\frac{4}{52} \\ =\frac{12+4}{52} \\ =\frac{16}{52} \end{gathered}[/tex]

Hence, the probability of selecting a face card or a 10 is (16/52).

c)

Out of 52 cards, the number of spade cards is 13.

[tex]n(s)=13[/tex]

Similarly, out of 52 cards, the number of heart cards is 13.

[tex]n(h)=13[/tex]

Then, the probability of drawing one out of 13 spade cards or one out of 13 heart cards can be calculated as,

[tex]\begin{gathered} P(E)=P(s)+P(h) \\ =\frac{n(s)}{N}+\frac{n(h)}{N} \\ =\frac{13}{52}+\frac{13}{52} \\ =\frac{26}{52} \end{gathered}[/tex]

Hence, the probability of selecting a spade or a heart is 26/52.

d)

Out of 52 cards, the number of red cards is,

[tex]n(r)=26[/tex]

Out of 52 cards, the number of black cards is,

[tex]n(b)=26[/tex]

Then, the probability of drawing one out of 26 red cards or one out of 26 black cards is,

[tex]\begin{gathered} P(E)=P(r)+P(b) \\ =\frac{n(r)}{N}+\frac{n(b)}{N} \\ =\frac{26}{52}+\frac{26}{52} \\ =\frac{52}{52} \\ =1 \end{gathered}[/tex]

Hence, the probability of selecting a red card or a black card is 1.

Read the problem below and find the solution. Use a model or act the
problem out to help solve it.
A group of 24 students have recess together. They are making teams to play
a game. Each team has to have exactly 5 players, and no one can be on more
than one team. How many teams can they make? (It is possible that not
everyone can be on a team.)

Answers

Answer:

possible

Step-by-step explanation:

Hello I need help with this question as fast as possible please , I am on my last few questions and I have been studying all day for my final exam tomorrow. It is past my bed time and I am exhausted . Thank you so much for understanding:))

Answers

Solution:

Given the inequality below

[tex]2\left(4+2x\right)\ge \:5x+5[/tex]

Solving the inequality to find the value of x

[tex]\begin{gathered} 2\left(4+2x\right)\ge \:5x+5 \\ Expand\text{ the brackets} \\ 8+4x\ge \:5x+5 \\ Collect\text{ like terms} \\ 4x-5x\ge5-8 \\ -x\ge\:-3 \\ x\le \:3 \end{gathered}[/tex]

Hence, the answer is

[tex]x\le \:3[/tex]

A student entering a doctoral program in educational psychology is required to select two courses from the list provided as part of his or her program (a)List all possible two-course selections (b)Comment on the likelihood that you EPR 625 and EPR 686 will be selected The course list EPR 613, EPR 664, EPR 625, EPR 685, EPR 686(a)select all the possible two-course selections belowA. 613, 686B. 625,686C. 613,613,664D. 664,685E. 625,685F. 625,672G. 613,625H. 685,686I. 664,625J 686,686K. 613,613L. 613,685M. 664, 686N. 613,664

Answers

List of courses that the student entering a doctoral program in educational psychology can take:

EPR 613, EPR 664, EPR 625, EPR 685, EPR 686

Therefore, the possible two-course selections for the student are:

A. Both courses are on the list given: 613, 686

B. Both courses are on the list given: 625, 686

C. It's not possible. This option contains three courses.

D. Both courses are on the list given: 664, 685

E. Both courses are on the list given: 625, 685

F. It's not possible, Course 672 isn't available.

G. Both courses are on the list given: 613, 625

H. Both courses are on the list given: 685, 686

I. Both courses are on the list given: 664, 625

J. It's not possible. Just one course is given.

K. Same case than J. Just one course.

L. Both courses are on the list given: 613, 685

M. Both courses are on the list given: 664, 686

N. Both courses are on the list given: 613, 664

A forest products company claims that the amount of usable lumber in its harvested trees averages142 cubic feet and has a standard deviation of 9 cubic feet. Assume that these amounts haveapproximately a normal distribution.1. What percent of the trees contain between 133 and 169 cubic feet of lumber? Round to twodecimal places.II. If 18,000 trees are usable, how many trees yield more than 151 cubic feet of lumber?

Answers

[tex]\begin{gathered} I)84\% \\ II)2857 \end{gathered}[/tex]

1) Considering that the amount of lumber in this Data Set has been normally distributed, then we can start by finding this Percentage (or probability in this interval, writing out the following expressions:

[tex]\begin{gathered} P(133Now we can replace it with the Z score formula, plugging into that the Mean, the Standard Deviation, and the given values:

[tex]Z=\frac{X-\mu}{\sigma}[/tex]

Then:

[tex]\begin{gathered} P(\frac{133-142}{9}<\frac{X-\mu}{\sigma}<\frac{169-142}{9}) \\ P(-1Checking a Z-score table we can state that the Percentage of the trees between 133 and 169 ft³ is:

[tex]P(-12) Now, let's check for the second part, the number of trees. But before that, let's use the same process to get a percentage that fits into that:

[tex]\begin{gathered} P(X>151)=\frac{151-142}{9}=1 \\ P(Z>1)=0.1587 \end{gathered}[/tex]

Note that 0.1587 is the same as 15.87%. Multiplying that by the total number of trees we have:

[tex]18000\times0.1587=2856.6\approx2857[/tex]

Rounding it off to the nearest whole.

3) Thus, The answers are:

i.84%

ii. 2857 trees

Sophia is in the business of manufacturing phones. She must pay a daily fixed cost of $200 to rent the building and equipment, and also pays a cost of $100 per phone produced for materials and labor. Make a table of values and then write an equation for C,C, in terms of p,p, representing total cost, in dollars, of producing pp phones in a given day.

I need the equation

Answers

Answer:

C = 100p + 200

Step-by-step explanation:

Because C is the total cost per day, 200 is the y-intercept because it's paid daily. The 100 is the slope since "he pays a cost of $100 per phone produced

The students of a school were asked to participate in a competition for making and decorating penholders in the shape of a cylinder with a base, using cardboard.Each penholder was to be radius of 3cm and height 10.5 cm. The school was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be brought for the competition. Assume: pi = 22/7

Answers

Recall the surface area for the following figures.

[tex]\begin{gathered} \text{Cylinder}=2\pi rh+2\pi r^2 \\ \\ \text{The term }2\pi r^2\text{ includes a cover both the top and bottom of the cylinder} \\ \text{Since we will be using only the bottom modify the formula such that it only} \\ \text{includes the bottom part} \\ \\ \text{Pen Holder Surface Area}=2\pi rh+\pi r^2 \end{gathered}[/tex]

Given that

height = h = 10.5 cm

radius = r = 3 cm

π = 22/7

Substitute the following given and we have the surface area for the pen holder

[tex]\begin{gathered} \text{Pen Holder Surface Area}=2\pi rh+\pi r^2 \\ \text{Pen Holder Surface Area}=2(\frac{22}{7})(3\operatorname{cm})(10.5\operatorname{cm})+(\frac{22}{7})(3\operatorname{cm})^2 \\ \text{Pen Holder Surface Area}=198\operatorname{cm}+(\frac{22}{7})(9\operatorname{cm}) \\ \text{Pen Holder Surface Area}=198\operatorname{cm}+\frac{198}{7}\operatorname{cm} \\ \text{Pen Holder Surface Area}=\frac{1584}{7}\operatorname{cm}^2 \end{gathered}[/tex]

Now that we have the surface area, multiply it by 35 since there are 35 competitors in the competition

[tex]undefined[/tex]

6. Point A is located at (7, -3) and point M is located at (-9,5). If M is themidpoint of segment AP, what are the coordinates of point P?"A) (-25, 13)B) (-1,1)C) (8,-4)OD) (25, -13)7 Name the ray that is opposite to ray CD."

Answers

Answer:

The coordinates of P is;

[tex](-25,13)[/tex]

Explanation:

Given that;

Point A is located at (7, -3) and point M is located at (-9,5).

And;

M is the midpoint of segment AP.

The coordinate of P will be represented by;

[tex]P=(x_2,y_2)[/tex]

Using the formula for calculating midpoint;

[tex]\begin{gathered} x=\frac{x_1+x_2}{2} \\ y=\frac{y_1+y_2}{2} \end{gathered}[/tex]

Making x2 and y2 the subject of formula;

[tex]\begin{gathered} x_2=2x-x_1 \\ y_2=2y-y_1 \end{gathered}[/tex]

So, substituting the given coordinates;

[tex]\begin{gathered} M=(x,y)=(-9,5) \\ A=(x_1,y_1)=(7,-3) \end{gathered}[/tex]

So, we have;

[tex]\begin{gathered} x_2=2x-x_1 \\ x_2=2(-9)-7 \\ x_2=-25 \end{gathered}[/tex]

And;

[tex]\begin{gathered} y_2=2y-y_1 \\ y_2=2(5)-(-3)=10+3 \\ y_2=13 \end{gathered}[/tex]

Therefore, the coordinates of P is;

[tex](-25,13)[/tex]

3, -10, 16, -36, 68, ___-3, 12, -33, 102, -303, ___Identify a pattern in each list of numbers. Then use this pattern to find the next number.

Answers

As for the sequence 3,-10,16,-36,68,..., notice that

[tex]\begin{gathered} 3-13=-10 \\ -10+26=-10+2(13)=-10+2^1(13)=16 \\ 16-52=16-4(13)=16-2^2(13)=-36 \\ -36+104=-36+8(13)=-36+2^3(13)=68 \end{gathered}[/tex]

Therefore, the next term is

[tex]68-2^4(13)=68-16(13)=-140[/tex]

The answer is -140.

Regarding the second pattern, notice that

[tex]\begin{gathered} -3+15=12 \\ 12-45=12-3(15)=12-3^1(15)=-33 \\ -33+135=-33+9(15)=-33+3^2(15)=102 \\ 102-405=102-27(15)=102-3^3(15)=-303 \end{gathered}[/tex]

Then, the next term of the sequence is

[tex]-303+3^4(15)=912[/tex]

The answer is 912

Production has indicated that they can produce widgets at a cost of $16.00 each if they lease new equipment at a cost of $40,000. Marketing has estimated the number of units they can sell at a number of prices (shown below). Which price/volume option will allow the firm to avoid losing money on this project?

Answers

The price/volume option that will allow the firm to avoid losing money on this project is C. 2,300 units at $34.00 each.

How is this option determined?

To determine the correct option, we use the cost-volume-profit analysis tool.

The cost-volume-profit (CVP) analysis involves determining how the volume of sales drives profitability.

The CVP technique classifies costs into their variable and fixed cost elements for the purpose of this analysis.

Variable cost per unit = $16

Fixed cost = $40,000

                        Option A    Option B   Option C  Option D   Option E

Sales units        3,000         1,900        2,300        2,500        1,700

Unit selling price $29       $36.50        $34          $31.50        $39

Sales revenue $87,000   $69,350   $78,200    $78,750    $66,300

Variable costs   48,000     30,400     36,800      40,000      27,200

Fixed cost         40,000     40,000     40,000      40,000     40,000

Total costs        88,000     70,400     76,800      80,000     67,200

Thus, the price/volume option that meets the firm's goal is Option C because the sales revenue exceeds the total costs.

Learn more about CVP analysis at https://brainly.com/question/27585018

#SPJ1

Question Completion with Price/Volume Options:

A. 3,000 units at $29.00 each.

B. 1,900 units at $36.50 each.

C. 2,300 units at $34.00 each.

D. 2,500 units at $31.50 each.

E. 1,700 units at $39.00 each.

a teacher bought 4 folders and 9 books for $33.75. on another day, she bought 3 folders and 12 books at the same prices for $34.50. how much did she pay for each folder and each book?

Answers

The teacher made two different purchases:

First purchase:

4 folders and 9 books for $33.75

Second purchase

3 folders and 12 books for $34.50

Let "f" represent the cost of each folder and "b" represent the cost of each book. You can express the total cost of each purchase as equations:

[tex]\begin{gathered} 1)4f+9b=33.75 \\ 2)3f+12b=34.50 \end{gathered}[/tex]

Now we have established a system of equations, to solve it, the first step is to write one of the equations in terms of one of the variables.

For example, I will write the first equation in terms if "f"

[tex]\begin{gathered} 4f+9b=33.75 \\ 4f=33.75-9b \\ \frac{4f}{4}=\frac{33.75-9b}{4} \\ f=\frac{135}{16}-\frac{9}{4}b \end{gathered}[/tex]

The second step is to replace the expression obtained for "f" in the second equation:

[tex]\begin{gathered} 3f+12b=34.50 \\ 3(\frac{135}{16}-\frac{9}{4}b)+12b=34.50 \end{gathered}[/tex]

Distribute the multiplication on the parentheses term

[tex]\begin{gathered} 3\cdot\frac{135}{16}-3\cdot\frac{9}{4}b+12b=34.50 \\ \frac{405}{16}-\frac{27}{4}b+12b=34.50 \\ \frac{405}{16}+\frac{21}{4}b=34.50 \end{gathered}[/tex]

Pass the number to the right side of the equal sign by applying the opposite operation to both sides of it

[tex]\begin{gathered} \frac{405}{16}-\frac{405}{16}+\frac{21}{4}b=34.50-\frac{405}{16} \\ \frac{21}{4}b=\frac{147}{16} \end{gathered}[/tex]

Now divide b by 21/4 to cancel the multiplication and to keep the equality valid, you have to divide both sides of the expression, so divide 147/16 by 21/4 too, or multiply them by its reciprocal fraction, 4/21, is the same.

[tex]\begin{gathered} (\frac{21}{4}\cdot\frac{4}{21})b=(\frac{4}{21}\cdot\frac{147}{16}) \\ b=\frac{7}{4}\approx1.75 \end{gathered}[/tex]

Each book costs $1.75

Now that we have determined how much does each book cost, we can determine the cost of each folder by replacing the value of "b" in the expression obtained for "f"

[tex]\begin{gathered} f=\frac{135}{16}-\frac{9}{4}b \\ f=\frac{135}{16}-\frac{9}{4}\cdot\frac{7}{4} \\ f=\frac{9}{2}\approx4.5 \end{gathered}[/tex]

Each folder costs $4.50

A model of a dinosaur skeleton was made using a scale of 1 in : 15 in in a museum. If the size of the dinosaur’s tail in the model is 8 in, then find the actual length of dinosaur’s tail.

Answers

The length of the real dinosaur's tail is 120 inches.

How to find the actual length of the tail?

We know that the scale of the model is 1in : 15in, this means that each inch in the model represents 15 inches of the actual dinosaur.

So, if the tail of the model has a length of 8 inches, the length of the real tail will have 15 times that, so the length is given by the product:

8in*15 = 120in

Learn more about scale models.

https://brainly.com/question/25722260

#SPJ1

Other Questions
a bag contains 275 marbles. some are red and the rest are black. there are 24 red marbles for every black marble. how many red marbles are in the bag? A rectangular room is 1.8 times as long as it is wide, and its perimeter is 29 meters. Find the dimension of the room. The length is : meters and the width is meters. you are looking to purchase a property and are in negotiations with the seller and at the same time in discussions with your lender. the seller is offering the property at a price of 182,000 and you anticipate a full price offer. your lender will require a 70% loan-to-value (ltv). given these assumptions, how much will your loan amount be? 7.At a project party outside the office premises, your colleague Mr.A has had a lot to drink and is making sexual gestures and comments, at one of your other female colleagues, Mr.B who is sitting next to you.She looks visibly upset.What should you do?a.Ignore and let Ms.B handle the situation at hand.b.Become a supportive bystander and intervene to stop the inappropriate behaviour, with helpfrom a senior staff at the pub. Subsequently, report this matter to grb mail addressc.Only Ms.B can report such a complaint.Hence, there is no action required from your end.d.Since the incident happened at the pub, there is no need to report it further to the organization. A(n).is a fracture that does not break through the skin; it is alsocalled a closed fracture.A. complex fractureB. simple fractureC. stress fractureD. Achilles fracture Alec wants to purchase a new phone that costs $219.00. His current average net pay is $212.34 each week. What percent of his weekdy net pay does Alec need to save each week, for the next seven weeks, to reachhis goal? Round to the nearest hundredth (1 point)9.69%14.73%O 21.76%31.28% Solve the inequality for x. Show each step of the solution.12(x+3)>4x-8 To distribute something means to __________. raph, ascriptionof valuescontext.R24mble.writtenof acion,SHIPPING The OOCL Shenzhen, one of the world's largestcontainer ships, carries 8063 TEUS (1280-cubic-feet containers).Workers can unload a ship at a rate of 1 TEU every minute. Theequation y = 8063 - 60x represents the number of TEUs on theship y after x hours of the workers unloading the containers fromthe Shenzhen.a. Find the x- and y-intercepts and interpret their meaning in thecontext of the situation.Graph the equation by using the intercepts If a company using competitive pricing sets its prices higher than its competitors, it should offer extra Blank Space __________. Use the Rational Zeros Theorem to list all possible zeros of the function below.f(x) = 11x 2x + x + 10.-[Enter all possible zeros predicted by the Rational Zero Theorem individually and separated by commas(1,-1,-1/2,1/2,etc.) Note: You do not need to factor the polynomial.] Evaluate.C15 3 It says I need to evaluate 15^C 3 Select the word that connects the independent clauses in the sentence.One should make the most of today, for one never knows what tomorrow can bring carts, bricks, and bands 10. Predict the acceleration that would occur if four rubber bands were used to pull a cart loaded with two bricks.a. Approximately 0.16 m/s2 b. Approximately 0.50 m/s2c. Approximately 0.64 m/s2 d. Approximately 1.00 m/s2 The probability that a tourist- will spot a Cheetah in Kruger National park is 0.4, the probability that he will spot a Tiger, is 0.7, and the probability that he will spot a Cheetah, or a Tiger or both is 0.5. What is the probability that the tourist will spot: (a) both animals? (b) neither of the animals? (c) Determine with appropriate reason whether the event of spotting a Cheetah and a Tiger are independent or not? . Identify the difference. -2-(-6) Help please! Solve this and show your steps: c = 6.00 + 29.99 Two cars are driving on the same road, in the samedirection. They start driving from the same place and aretraveling at a constant speed. The second car starteddriving 1.5 hours after the first car started driving. If thesecond car drives 60 miles per hour and the first drives 40miles per hour, how many miles will each car havetraveled when the second car catches up to the first? Find an equation for the line that passes through the points (-2,-6) and (6,-4). what is the absolute value for this equation? : |-x| = 3