a mass of 500g ball is kicked at angle of 45 degree to the horizontal the ball reaches 12m height what is the initial velocity

Answers

Answer 1

The initial velocity of a 500g ball kicked at a 45-degree angle to the horizontal and reaching a height of 12m can be calculated using the kinematic equation.

What is the kinematic equation?

The equation of kinematics is a set of equations that are used to describe the motion of objects. They relate to displacement, velocity, acceleration, and time. Kinematic equations are divided into two categories, depending on the object's acceleration: zero acceleration and non-zero acceleration.

The kinematic equation for the object in motion with uniform acceleration is as follows:v^2 = u^2 + 2asWhere: v = final velocity u = initial velocity a = acceleration s = displacement. To calculate the initial velocity of the ball, we can rearrange the equation above to obtain:u^2 = v^2 - 2as From the given, a = -9.8 m/s² (negative acceleration indicates that the ball is decelerating or moving upward) s = 12m v = 0 (the final velocity is zero because the ball has stopped rising and is about to start falling). We'll use these values to calculate the initial velocity of the ball.u² = (0)² - 2(-9.8)(12)u² = 235.2u = sqrt(235.2)u = 15.33 m/s.

Therefore, the initial velocity of the ball is approximately 15.33 m/s.

Read more about velocity :

https://brainly.com/question/80295

#SPJ11


Related Questions

two 4.0cm*4.0cm metal plates are separated by a 0.20-mm-thick piece of teflon. a. what is the capacitance? b. what is the maximum potential difference between the plates?

Answers

The capacitance of two metal plates separated by a 0.20-mm-thick is approximately 0.25 pF  and the maximum potential difference between the plates is 8.4 kV.

a. The capacitance of two metal plates separated by a 0.20-mm-thick piece of Teflon is approximately 0.25 pF (picofarad).

b. The maximum potential difference between the two metal plates is determined by the permittivity of the dielectric material, which in this case is Teflon.

The permittivity of Teflon is about 2.1 and the capacitance of the plates is 0.25 pF, so the maximum potential difference between the plates can be calculated using the equation:

Vmax = (permittivity * Capacitance) / Area.

Therefore, the maximum potential difference between the plates is 8.4 kV.

For more such questions on capacitance , Visit:

https://brainly.com/question/13578522

#SPJ11

in u.s. customary units, air pressure is measured in pounds per square inch. in the metric system, it is measured in pascals, and one pascal is equal to

Answers

In the metric system, air pressure is measured in pascals. One pascal is equal to a force of one newton per square meter.

Air pressure can be measured using different units. Pascal is a unit of pressure, defined as one newton per square meter. This unit is named after Blaise Pascal, a French mathematician, physicist, and philosopher who made important contributions to the fields of hydrodynamics and hydrostatics.

In the US customary system, air pressure is measured in pounds per square inch (psi), while in the International System of Units (SI), it is measured in pascals (Pa). The unit psi is used to measure pressure in liquids and gases, and it is defined as the amount of pressure exerted by a force of one pound-force per square inch.

Learn more about pascal unit at https://brainly.com/question/30777634

#SPJ11

A skydiver of mass 95kg ,before opening his parachute, falls at t1 with V1= 11m/s and at t2 with t2 v2=27m/s; supposing friction is zero, find the distance covered between t1 and t2

Answers

The skydiver covered a distance of approximately 94.9 meters before opening his parachute between t1 and t2, assuming no air resistance or friction.

v = final velocity = v2 = 27 m/s

u = initial velocity = v1 = 11 m/s

a = acceleration = g = 9.8 m/[tex]s^2[/tex]

s = (v² - u²) / 2a

s = (27² - 11²) / (2 x 9.8) = 94.9 meters

Resistance measures an item's potential to impede the drift of electrical present-day through it. it's far measured in ohms (Ω). Resistance is decided by way of the bodily residences of an item, along with its dimensions, material, and temperature. while electric-powered present-day flows thru a conductor, it encounters resistance that slows down its float. This resistance is as a result of the collisions among electrons and the atoms inside the conductor.

Resistance can be laid low with changes inside the bodily properties of the conductor, such as duration, cross-sectional region, or temperature. an extended or narrower conductor may have higher resistance, even as a much broader conductor could have decreased resistance. understanding resistance is critical for designing and working electrical circuits. with the aid of controlling the resistance of a circuit, engineers can make sure that the appropriate amount of current flows to electricity the devices linked to it.

To know more about Resistance visit here:

brainly.com/question/11431009

#SPJ4

according to our textbook, what is the best way to defend ourselves against an asteroid which is on course to collide with the earth in 7 years?

Answers

If an asteroid is on a collision course with Earth and is predicted to collide within seven years, the best way to defend ourselves would depend on the size and trajectory of the asteroid.

What is an asteroid ?

An asteroid is a small, rocky object that orbits the Sun. Most asteroids are found in the asteroid belt, a region between the orbits of Mars and Jupiter. Asteroids can range in size from a few meters to several hundred kilometers in diameter, with the largest known asteroid being Ceres.

Most asteroids are located in the asteroid belt between Mars and Jupiter, but they can also be found in other parts of the solar system. Some asteroids have orbits that cross the orbit of Earth, and these are known as near-Earth asteroids (NEAs). NEAs are of particular interest because they have the potential to collide with Earth, which could have significant consequences for life on our planet.

Asteroids are believed to be remnants from the early solar system, and their study can provide insights into the formation and evolution of the solar system. In recent years, several space missions have been launched to study asteroids up close, including NASA's OSIRIS-REx mission to asteroid Bennu and the Japanese space.

To know more about Asteroids visit :

https://brainly.com/question/19161842

#SPJ1

a brick is falling from the roof of a three-story building. how many force vectors would be shown on a free-body diagram? name them

Answers

A brick is falling from the roof of three story building then free-body diagram would show only one force vector, which is the force of gravity acting on the brick.

A free-body diagram is used to graphically represent the forces acting on an object. It shows all of the forces acting on an object and can be used to analyze the motion of an object.

A free-body diagram for a falling brick would include two force vectors: Gravity or Weight.

If we consider only the brick and neglect air resistance, then there are two force vectors that would be shown on a free-body diagram of the brick:Force of gravity: The force of gravity, which pulls the brick downwards with a magnitude of its weight. This force is always present and directed downwards towards the center of the Earth. Normal Force: The normal force, which is the force exerted by the roof or any surface in contact with the brick that prevents it from falling through the surface. As the brick is falling, there is no contact force from the roof, so the normal force is zero.

So, in this scenario, the free-body diagram would show only one force vector, which is the force of gravity acting on the brick.

To lean more about the 'force vectors':

https://brainly.com/question/30893090

#SPJ11

the intensity of the sound of a television commercial is 10 times greater than the intensity of the television program it follows. by how many decibels does the loudness increase?

Answers

The television commercial loudness increases by 10 decibels.

Increase in the Intensity of sound

The decibel (dB) scale is a logarithmic measure of sound intensity. The intensity of a sound is measured in watts per square meter and the decibel scale is a way to express the relative loudness of a sound, compared to a reference level.

A 10 dB increase in intensity is a 10-fold increase in sound power. This means that a sound with an intensity of 10 watts per square meter is 10 times louder than a sound with an intensity of 1 watt per square meter.

Learn more about Intensity of sound here:

https://brainly.com/question/17062836

#SPJ1

What is the concept of Schrodinger about nature of electron?

Answers

Answer: The behaviour of electrons inside atoms could be explained by treating them mathematically as waves of matter

Explanation:

Erwin Schrödinger proposed the quantum mechanical model of the atom, which treats electrons as matter waves.

Answer:

[tex]According \: to \: Schrodinger \: \\ model, \: nature \: of \: electron \: \\ in \: an \: atom \: is \: as \: wave \: \\ only

[/tex]

a weight hanging from a spring will remain hanging until the weight is pulled down and released. when the weight is released the spring will bounce up and down. which of newton's laws explains why the spring will bounce?

Answers

This principle can be observed in other everyday scenarios, such as jumping on a trampoline or the recoil of a gun after firing.  Newton's Third Law of Motion is a fundamental principle in classical mechanics and explains why the spring will bounce when the weight is released.

The bouncing of the weight when released is explained by Newton's Third Law of Motion, which states that for every action there is an equal and opposite reaction. When the weight is released, the spring exerts an equal and opposite force on the weight, propelling it upwards and causing it to bounce. This is because when the weight is pulled down, it compresses the spring, storing potential energy. When the weight is released, the spring decompresses and the potential energy is released, propelling the weight in the opposite direction.

To learn more about Newton's Third Law ;

https://brainly.com/question/25998091

#SPJ11

A dog can hear sounds in the range from 15
to 50,000 Hz.
What wavelength corresponds to the lower
cut-off point of the sounds at 20◦C where the
sound speed is 344 m/s?
Answer in units of m.

Answers

Explanation:

Speed of sound is 344

The frequency corresponding to the lower cut-off point is the lowest frequency which his 15Hz

F=15Hz

The relationship between the wavelength, speed and frequency is given as

v=fλ

Then,

λ=v/f

λ=v/f

λ=344/15

λ=22.93m

a spherical capacitor has vacuum between its conducting shells and a capacitance of 125 pf . the outer shell has inner radius 9.00 cm . what is the outer radius of the inner shell? express your answer with the appropriate units.

Answers

For a spherical capacitor with a capacitance of 125 and a vacuum between its conducting shells, the outer radius of the inner shell is around 5.60 cm.

The capacitance of a spherical capacitor is given by:

C = 4πε₀[(r₁r₂)/(r₂-r₁)]

where C is the capacitance, ε₀ is the electric constant (8.85 x [tex]10^{-12}[/tex] F/m), r₁ is the radius of the inner shell, and r₂ is the radius of the outer shell.

In this case, we know that the capacitance C = 125 pF (picoFarads), r₂ = 9.00 cm, and we want to find r₁.

We can rearrange the equation to solve for r₁:

r₁ = (C × r₂)/(4πε₀ + C)

Substituting the values:

r₁ = (125 x [tex]10^{-12}[/tex] F × 0.09 m) / (4π × 8.85 x [tex]10^{-12}[/tex] F/m + 125 x [tex]10^{-12}[/tex] F)

r₁ ≈ 5.60 cm

Therefore, the outer radius of the inner shell is approximately 5.60 cm.

To learn more about the capacitor at

https://brainly.com/question/17176550

#SPJ4

two stationary point charges q1 and q2 are shown in the figure along with a sketch of some field linesrepresenting the electric field produced by them. what can you deduce from the sketch?

Answers

From the sketch, we can deduce that the two charges q1 and q2 are of opposite signs, as field lines start at the positive charge q1 and end at the negative charge q2. The field lines also indicate that the magnitude of the electric field produced by q1 is larger than that of q2.

Additionally, the field lines show that the electric field lines near the charges are denser, indicating a stronger electric field intensity near the charges. The direction of the electric field points from q1 to q2, which is consistent with the direction of the force that a positive test charge would experience if placed in the field. The field lines also show that the electric field is radial, i.e., the field lines point directly away from or towards each charge in a straight line, which is a characteristic of the electric field produced by a point charge. Finally, the density of the field lines decreases with distance from the charges, indicating that the electric field strength decreases with distance from the charges, following an inverse-square law.

Learn more about electric field at: https://brainly.com/question/14372859

#SPJ11

how large must the coefficient of static friction be between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h ?

Answers

The coefficient of static friction between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h is 4.64

Whenever the object rotаtes аround the curved pаth then а net force аcts on the object pointing towаrds the center of а circulаr pаth аnd it is cаlled а centripetаl force. Mаthemаticаlly, we cаn write;

Centripetаl Force = [tex]\frac{mv^{2} }{r}[/tex]

where m is the mass of the body, v is the velocity of the body, and r is the radius of rotation.

We are given:

Radius of rotation r = 145 mMaximum velocity of car v = 130 km/h × [tex]\frac{5}{18}[/tex] = 81.25 m/sm be the mass of the carμs be the coefficient of static friction

Since the car is making circular motion, therefore, necessary centripetal force is provided by the frictional force.

frictional force = centripetal force

μsmg = [tex]\frac{mv^{2} }{r}[/tex]

μs = [tex]\frac{v^{2} }{rg}[/tex]

μs = [tex]\frac{81.25^{2} }{145.9.81}[/tex]

μs = 4.64

Therefore, the coefficient of static friction between the tires of the car and the road surface is 4.64.

For more information about the coefficient of static friction refers to the link: https://brainly.com/question/13828735

#SPJ11

why do the phases of venus show that the solar system is in a heliocentric model instead of a geocentric model?

Answers

The phases of Venus show that the solar system is in a heliocentric model instead of a geocentric model because the heliocentric model states that the Sun is at the center of the solar system, while the geocentric model states that Earth is at the center of the universe.

The phases of Venus can only be explained in the heliocentric model because the planet is orbiting the Sun.The phases of Venus are an important piece of evidence supporting the heliocentric model proposed by Nicolaus Copernicus. The geocentric model was the widely accepted model of the universe until the 16th century when Copernicus proposed the heliocentric model, which suggested that the Sun is at the center of the solar system and the Earth and other planets orbit around it.

The phases of Venus show that it orbits the Sun and not the Earth because, as it orbits the Sun, different portions of the planet's sunlit side are visible from Earth. This can only occur in a heliocentric model because Venus is between the Earth and the Sun in its orbit, which causes it to pass through phases. Therefore, the phases of Venus are not consistent with a geocentric model, which suggests that Venus orbits the Earth.

Learn more about heliocentric at:

https://brainly.com/question/18403954

#SPJ11

You're designing an external defibrillator that discharges a capacitor through the patient's body, providing a pulse that stops ventricular fibrillation. Specifications call for a capacitor storing 250 J of energy; when discharged through a body with R = 48 Ω transthoracic resistance, the capacitor voltage is to drop to half its initial value in 10 ms.
A) Determine the capacitance (to the nearest ) 10 μF).
B) Determine initial capacitor voltage (to the nearest 100 V) that meet these specs.
I need both correct answers to 2 significant figures.

Answers

a..... 1.04 x 10⁻⁴ Vi

b.... 9500 V

A) Determine the capacitance (to the nearest 10 μF).

First, we should identify the formula that we will use to solve the problem.

The formula that relates to capacitance is:

C = 2E / V². Where C is the capacitance in farads, E is the energy stored in joules, and V is the voltage across the capacitor in volts.

Converting the energy to joules, we have: E = 250J.

Now we know that the voltage needs to drop to half of its initial value in 10 ms. We can use the following formula to calculate the capacitance: C = R x t / ln(Vi / Vf) where R is the resistance in ohms, t is the time in seconds, Vi is the initial voltage, and Vf is the final voltage, which is half of the initial voltage.

B) Plugging in the given values, we get:

C = 48 x 0.01 / ln(Vi / (Vi / 2))Simplifying and solving for capacitance, we get:

C = 1.04 x 10⁻⁴ ViNow we can use the energy formula to solve for Vi:Vi = √(2E / C)

Plugging in the given values, we get:Vi = √(2 x 250 / 1.04 x 10⁻⁴)Simplifying and solving for Vi, we get:Vi = 9469 V

Therefore, the capacitance that meets these specifications is 100 μF and the initial capacitor voltage that meets these specifications is 9500 V, to the nearest 100 V.

Learn more about capacitance

brainly.com/question/28445252

#SPJ11

7) you drop a stone down a well that is 9.5 m deep. how long is it before you hear the splash? the speed of sound in air is 343 m/s and air resistance is negligible

Answers

If you drop a stone down a well that is 9.5 m deep, it will take approximately 0.028 seconds for you to hear the splash. This is because the speed of sound in air is 343 m/s, and air resistance is negligible.


The question is about finding the time it will take for the sound of the splash to reach the surface of the well. Given data:

Depth of the well = 9.5 m

Speed of sound in air = 343 m/s

We have to find the time it will take for the sound of the splash to reach the surface of the well.

Let's assume that "t" is the time that the sound of the splash takes to reach the surface of the well.

Using the formula:

t  = Distance/Speed

Using the above formula, let's find the time it will take for the sound of the splash to reach the surface of the well.

Distance = Depth of the well = 9.5 m

Speed = Speed of sound in air = 343 m/s

So, the time is:

t = Distance/Speed

t = 9.5/343

t = 0.0277 s ≈ 0.028 s

Therefore, the time it will take for the sound of the splash to reach the surface of the well is 0.028 s

Learn more about time of falling water splash at https://brainly.com/question/21323527

#SPJ11

2. how many times a minute does a boat bob up and down on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s?

Answers

The boat will bob up and down on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s once every 7.50 seconds.

To solve the given question, we must use the formula:

n= v/f

Where: v is the velocity of the wave (in m/s)f is the frequency of the wave (in Hz)n is the number of cycles per second

Therefore, the frequency of the wave (in Hz) can be calculated by using the formula:

f= v/λ

where: v is the velocity of the wave (in m/s)λ is the wavelength of the wave (in m)

The frequency of the wave is 0.1333 Hz (approx).

Now, the number of cycles per second (n) is: n = v/λ

We can solve for n by dividing the velocity of the wave by the wavelength of the wave.

Therefore,

n= v/λ= (4.80 m/s) / (36.0 m)= 0.1333 Hz

So, the boat bob up and down 0.1333 times a minute on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s.

1 Hz = 60 seconds,

0.1333 Hz = 7.50 seconds.

To know more about Frequency, refer here:

https://brainly.com/question/29739263#

#SPJ11

a 100 cm diameter propeller blade, similar to the blade in example 4.15, is attached to a motor spinning at a constant rate. what is true about the radial (centripetal) acceleration and the tangential acceleration at the end of the blade?

Answers

The true statements about the radial (centripetal) acceleration and the tangential acceleration at the end of the blade are: the radial acceleration is non-zero the tangential acceleration is zero

The radial acceleration is non-zero and the tangential acceleration is zero. This is because, the radial acceleration is determined by the formula, ar = (v²)/r

where ar is the radial acceleration, v is the velocity and r is the radius. Thus, since the propeller blade is spinning at a constant rate, the velocity v is constant.

Therefore, the radial acceleration is constant and non-zero.

The tangential acceleration, on the other hand, is given by at = rα

where at is the tangential acceleration and α is the angular acceleration. Since the blade is spinning at a constant rate, the angular acceleration is zero. Therefore, the tangential acceleration is zero.

So, the correct option is the radial acceleration is non-zero and the tangential acceleration is zero.

Learn more about tangential acceleration at https://brainly.com/question/11476496

#SPJ11

Please help. Due at Midnight!

Answers

The magnitude and direction of the net force on the center charge is 3.929 x 10⁻⁴ N.

What is unit of charge?

The unit of charge is the Coulomb (C). It is named after French physicist Charles-Augustin de Coulomb and is defined as the amount of electric charge that flows through a circuit when a current of one ampere flows for one second. One Coulomb is also equivalent to the charge on approximately 6.24 x 10¹⁸ electrons. The Coulomb is one of the seven base SI units (International System of Units) and is used to measure electric charge in physics and engineering.

So, the magnitude of the net force on the center charge is 3.929 x 10⁻⁴ N. Since F12 is directed towards the left, and F23 is directed towards the right, the net force is also directed towards the left. Therefore, the direction of the net force on the center charge is to the left.

According to Coulomb's law to calculate the force exerted by each of the other charges on the center charge, and then add them vectorially.

Let's call the left charge Q1, the center charge Q2, and the right charge Q3.

The force exerted on Q2 by Q1 is given by:

F₁₂ = k * |Q1| * |Q2| / r₁₂²

where k is Coulomb's constant, |Q1| and |Q2| are the magnitudes of the charges, and r₁₂ is the distance between them. Since Q1 is positive and Q2 is negative, the force F₁₂ is attractive and directed towards Q1. Because the distance between them is 2m, we can say:

F₁₂ = 9 x 10⁹ Nm²/C² * |52 x 10⁻⁶ C| * |3.10 x 10⁻⁶ C| / (2m)²

= 3.468 x 10⁻⁴ N (attractive)

The force exerted on Q2 by Q3 is given by:

F₂₃ = k * |Q2| * |Q3| / r₂₃²

where |Q3| is positive, and |Q2| is negative, so the force F23 is repulsive and directed away from Q3. The distance between them is also 2m, so:

F₂₃ = 9 x 10⁹ Nm²/C² * |3.10 x 10⁻⁶ C| * |68 x 10⁻⁶ C| / (2m)²

= 5.383 x 10⁻⁵ N (repulsive)

To find the net force on Q2, we need to add these two forces vectorially. Since they act along the same line, we can simply subtract their magnitudes:

Fnet = |F₁₂| - |F₂₃|

= 3.468 x 10⁻⁴ N - 5.383 x 10⁻⁵N

= 3.929 x 10⁻⁴ N.

To know more about Coulomb's law, visit:

https://brainly.com/question/9261306

#SPJ1

Two aircraft are flying toward each other at the same speed. They each emit a 800 HZ whine. what speed (km/hr) must each aircraft have an order that pitch they both hear is 2 times the emitted frequency. Hint: the speed of sound is 343m/s

Answers

Each aircraft must be moving at a speed of 85.75 km/hr towards each other to hear a pitch that is 2 times the emitted frequency.

What is frequency ?

Frequency is a physical quantity that describes the number of occurrences of a repeating event per unit of time. It is often measured in Hertz (Hz), which represents the number of cycles or vibrations per second.

In the context of waves, such as sound waves or electromagnetic waves, frequency refers to the number of complete cycles of the wave that occur in one second. A high frequency wave has more cycles per second than a low frequency wave.

Frequency is also an important concept in physics, particularly in the study of oscillations and waves. It is used to describe the behavior of systems that oscillate or vibrate, such as a simple pendulum or a guitar string. In these cases, the frequency of the oscillation is related to the natural frequency of the system, which is determined by its mass, stiffness, and other properties.

When two aircraft are moving towards each other, the sound waves from each aircraft are compressed, leading to a higher pitch than the emitted frequency. The pitch heard by the pilots of the aircraft can be calculated using the following formula:

Pitch heard = Emitted frequency * (Speed of sound + Speed of observer) / (Speed of sound - Speed of source)

Since the two aircraft are flying towards each other at the same speed, we can assume that the speed of one aircraft is x km/hr, and the speed of the other aircraft is also x km/hr. Therefore, the relative speed between the two aircraft is 2x km/hr.

Substituting the values given in the formula, we get:

2 * Emitted frequency = Emitted frequency * (343 + 2x) / (343 - x)

Simplifying this equation, we get:

686 - 2x = 343 + 2x

4x = 343

x = 85.75 km/hr

Therefore, each aircraft must be moving at a speed of 85.75 km/hr towards each other to hear a pitch that is 2 times the emitted frequency.

To know more about aircraft visit :-

https://brainly.com/question/5055463

#SPJ1

how fast is it moving when it reaches the top of its trajectory if the projectile is fired at a speed of 138 and an upward angle of 65 degrees?

Answers

The projectile will be moving at a speed of 57.21 m/s when it reaches the top of its trajectory.

When a projectile is fired at a speed of 138 and an upward angle of 65 degrees, the speed at the top of the trajectory can be calculated. To solve this problem, you need to understand some basic physics concepts. Here's how you can solve this problem:
1. First, identify the given values and write them down:
Initial velocity (u) = 138 m/s
Angle of projection (θ) = 65 degrees
Acceleration due to gravity (g) = 9.81 m/s²
2. Now, break down the initial velocity into its horizontal and vertical components:
Initial velocity in the horizontal direction = u cos θ
Initial velocity in the vertical direction = u sin θ
3. Use the equation of motion to calculate the time taken by the projectile to reach the top of its trajectory:
u sin θ = gt/2
t = 2u sin θ/g
4. Use the time obtained in step 3 to calculate the velocity at the top of the trajectory:
v = u cos θ
Where,
v = final velocity
u = initial velocity
θ = angle of projection
5. Substitute the given values in the equation to get the final answer:
v = u cos θ
v = 138 cos 65
v = 57.21 m/s
for such more question on projectile

https://brainly.com/question/24216590

#SPJ11

an n-type piece of silicon experiences an electric field equal to 0.1v/m. (a) calculate the velocity of electrons and holes in this material

Answers

In an n-type piece of silicon, the electric field causes the electrons to accelerate due to the attractive force between the negatively charged electrons and the positively charged electric field. This acceleration causes the electrons to reach a velocity of V = E/μ, where E is the electric field (0.1V/m) and μ is the mobility of electrons in silicon (1350 cm2/V⋅s). Therefore, the velocity of electrons in this material would be equal to 0.1V/m/1350cm2/V⋅s = 0.0741 cm/s.

The holes, on the other hand, experience a repulsive force due to the positive electric field. This causes the holes to decelerate, with a velocity of V = -E/μ. Therefore, the velocity of holes in this material would be equal to -0.1V/m/1350cm2/V⋅s = -0.0741 cm/s.

Know more about  electric field here:

https://brainly.com/question/8971780

#SPJ11

A solid cylinder of mass M = 1.25 kg and radius R = 13.5 cm pivots on a thin fixed frictionless bearing a string wrapped around the cylinder pulls downward with a force of F = 7.259 N

What is the magnitude of the angular acceleration of the cylinder?
86.03259 rad/s^2

Consider that instead of force F, a block with mass 0.74 kg with force = 7.259 N is attached to the cylinder with a mass less string.
What is now the magnitude of the angular acceleration of the cylinder
39.3943 rad/s^2
How far does the mass M travel downward before T equals 0.49S and T equals 0.69 S.
0.62755 m
The cylinder is changed to one with the same mass and radius but a different moment of inertia starting from mass starting from rest. The mass is now moved. The distance of 0.448 mass in the time interval of 0.47 seconds.
Find the Inertia of the new cylinder​

Answers

The inertia of the new cylinder is  0.0566 kgm². Other answers provided are correct.

How to find inertia?

The moment of inertia of the new cylinder can be calculated using the formula:

I = (M × d²) / (4 × Δθ)

Where:

M = mass of the cylinder

d = distance moved by the mass

Δθ = change in angular displacement (in radians)

Substituting the given values:

I = (1.25 × 0.448²) / (4 × 0.47)

I = 0.0566 kgm²

Therefore, the moment of inertia of the new cylinder is 0.0566 kgm².

Find out more on moment of inertia here: https://brainly.com/question/3406242

#SPJ1

two students sit on a seesaw in a way that makes it balance and not move. when a third person pushes down on one side, that side moves down. what caused the seesaw to move?

Answers

The seesaw moved when a third person pushed down on one side. This is because the seesaw is a simple machine that consists of a long plank balanced in the middle with a pivot point that allows it to move up and down.

When the two students sit on the seesaw in a way that makes it balance and not move, they are evenly distributed on each end. However, when the third person pushes down on one side, this distribution of weight becomes unequal, and the seesaw moves in the direction of the heavier side.

The heavier end of the seesaw moves down while the lighter end moves up. This is because the heavier side creates more force, or torque, on the pivot point, causing the seesaw to tilt towards that side.

As a result, the seesaw moves and is no longer in balance.

Learn more about balance and move at

brainly.com/question/14160688  

#SPJ11 

how to find the minimum thickness of a film such that reflected light undergo constructive interference

Answers

The minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.

The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),

where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.

For example, if the order of interference is 3, the wavelength of the light is 600 nm, and the index of refraction is 1.4,

the minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.

Constructive interference of reflected light occurs when the phase difference between the two waves is equal to an integral multiple of 2π.

This can be determined using the formula Δφ = (2π*m)/(λ*n), where Δφ is the phase difference, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.

To achieve constructive interference, the minimum thickness of the film can be determined by ensuring that the phase difference is equal to an integral multiple of 2π.

The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),

where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.

Constructive interference can be achieved by ensuring that the phase difference between the two waves is equal to an integral multiple of 2π.

to know more about light refer here:

https://brainly.com/question/15200315#

#SPJ11

when lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to

Answers

When lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to 0.99 ohms.

Resistance refers to the electrical property of a circuit component, such as a light bulb, that resists the flow of electrical current through it.

Ohm's law is a fundamental principle in electrical engineering that relates the resistance, voltage, and wattage in a circuit. It states that the resistance (R) is equal to the voltage (V) divided by the wattage (W).

W = 100 watts, V = 110 volts.

Use Ohm’s law to calculate the resistance (R):

R = V/W = 110/100 = 0.99 ohms.


Therefore, when a 100-watt light bulb is operating on a 110-volt household circuit, its resistance is approximately 0.99 ohms.

To know more about resistance click here:

https://brainly.com/question/11431009

#SPJ11

if you hold a 1.85 kg k g package by a light vertical string, what will be the tension in this string when the elevator accelerates as in the previous part?

Answers

The tension in the string of a 1.85 kg package held by a light vertical string will depend on the acceleration of the elevator. When the elevator accelerates, the force of acceleration on the package will be equal and opposite to the tension in the string, causing the tension to increase.

The equation for tension in a string is:

Tension = Mass x Acceleration

Therefore, in this case, the tension in the string is equal to 1.85 kg x Acceleration.

If we assume that the acceleration of the elevator is a constant rate, then the tension in the string can be calculated by multiplying the mass of the package by the acceleration of the elevator.

To sum up, the tension in the string of a 1.85 kg package held by a light vertical string will depend on the acceleration of the elevator. If the acceleration of the elevator is a constant rate, then the tension in the string can be calculated by multiplying the mass of the package by the acceleration of the elevator.

For more such questions on Tension.

https://brainly.com/question/13397436#

#SPJ11

what are some of the challenges associated with using solar energy as a primary source of electricity,

Answers

The primary challenge associated with using solar energy as a primary source of electricity is the cost and availability of the technology.

Cost: One of the significant challenges of solar energy is its cost. Solar power systems are expensive to install and maintain, and the initial costs of buying and installing solar panels and batteries can be high.

Capacity: Solar energy is an intermittent power source, meaning it can only produce electricity when the sun is shining. This means that solar power systems need to have a backup power source, such as batteries or an electrical grid, to provide electricity when there is no sunlight available.

Storage: Storing solar energy is a challenge, as batteries used to store energy can be expensive and have a limited lifespan. This means that solar power systems need to be designed to store energy effectively, or they will not be able to provide power when it is needed most.

Weather conditions: Solar panels rely on sunlight to produce electricity, which means that they can be affected by weather conditions such as cloud cover and rain. In areas with a lot of cloud cover or rain, solar power systems may not be able to produce enough electricity to meet demand.

Installation: Installing solar panels requires a large amount of space, which can be challenging in urban areas. Solar panels also need to be installed in a way that maximizes their exposure to the sun, which can be difficult in areas with a lot of shade.

Maintenance: Solar power systems require regular maintenance to ensure that they are working efficiently. This can involve cleaning the solar panels to remove dirt and debris, replacing worn-out components, and checking the system's performance to ensure that it is generating electricity as efficiently as possible.

In conclusion, Solar panels are expensive to install and maintain, and the amount of sunlight they receive will vary depending on the location and weather. Additionally, storing the solar energy collected during the day for use at night can also be a challenge.

To know more about Solar Energy, refer here:

https://brainly.com/question/9704099#

#SPJ11

how many electrons per second enter the positive end of the battery 2? answer in units of electrons/s.

Answers

The number of electrons per second that enter the positive end of a battery can be calculated by the current flowing through the circuit and the time for which it flows.

Therefore, The formula of current is as

I = Q/t

where I is the current,

Q is the charge passing through the circuit, and

t is the time for which the current flows.

Since one electron carries a charge of -1.6 x 10⁻¹⁹Coulombs, we can calculate the number of electrons passing through the circuit using the following formula:

n = Q/e

where n is the number of electrons and

e is the charge on an electron (-1.6 x 10⁻¹⁹ Coulombs).

If we know the current flowing through the circuit and the time for which it flows, we can calculate the number of electrons per second using the following formula:

n/s = I/e

where n/s is the number of electrons per second.

To learn more about the battery :

https://brainly.com/question/1699616

#SPJ11

NEED HELP ASAP!!!!!!!!!!!!
Part B
Tape a meter stick to the side of the table. Make sure the zero end is on the floor. Carry out the experiment using the four drop heights you chose in task 1, part D. (You may want to have an adult drop the ball while you watch how high it bounces.) Perform three trials for each drop height, and record the data in the table. (You may choose to video the bounces and watch the video in slow motion to improve your data collection.) Finally, average the bounce height measurements to get a final reading. Round the average bounce heights to the nearest whole number.



Drop Height
First Drop
Bounce Height
Second Drop
Bounce Height
Third Drop
Bounce Height
Average Bounce Height

Answers

Pretty easy actually…
First drop:
Drop height: 6 feet
Bounce height: 5’2

Second drop:
Drop height: 5 feet
Bounce height: 4’4


Third drop:
Drop height: 4 feet
Bounce height: 3’1

Average bounce height: 4’2

calculate the average force on the person if he is stopped by a padded dashboard that compresses an average of 1.00 cm. calculate the average force on the person if he is stopped by an air bag that compresses an average of 15.0 cm.

Answers

The average force on the person if they are stopped by an airbag that compresses an average of 15.0 cm is approximately 70,000 N.

To calculate the average force on a person,

Average force = (change in momentum) / (time interval)

Assuming that the person's initial velocity is constant, we can simplify the formula to,

Average force = (mass of the person) x (change in velocity) / (time interval)

Now, let's consider the two scenarios,

Stopped by a padded dashboard that compresses an average of 1.00 cm:

Assuming the person's initial velocity is known and constant, we need to know the time interval it takes for the person to stop after hitting the dashboard. Without this information, we cannot calculate the average force.

Stopped by an airbag that compresses an average of 15.0 cm:

The time interval for an airbag to deploy and cushion the person's impact is typically very short (about 0.03 seconds), so we can assume that the time interval is negligible in this case. Therefore, we can use the simplified formula above.

Let's assume the mass of the person is 70 kg and their initial velocity is 30 m/s. The change in velocity is the final velocity (0 m/s) minus the initial velocity (30 m/s), which is -30 m/s. The negative sign indicates that the person's velocity is decreasing.

Using the formula,

Average force = (mass of the person) x (change in velocity) / (time interval)

= (70 kg) x (-30 m/s) / (0.03 s)

= -70,000 N

To know more about average force, here

brainly.com/question/29754124

#SPJ4

Other Questions
Select the statements from the list below that accurately describe natural resources.O A. Natural resources include only nonliving things.O B. Obtaining natural resources has little or no impact the environment.O C. Many natural resources exist in limited amounts.O D. Some natural resources are being used much faster than they are being replenished.O E. Past geologic processes, like plate tectonics, determined where many natural resources arefound today.O F. The same natural resources can be found everywhere if one searches hard enough.O G. Synthetic materials, like plastics, are not made from natural resources.O H. Some natural resources take millions of years to form.O L. Obtaining natural resources is easy.O J. Finding, extracting, and using natural resources always have some costs of some kind. wildfires may spread in three ways: slowly along the ground, as a wall of fire along a flaming combustion front, or as a(n he nurse is assisting in collecting subjective and objective data from a client admitted to the hospital with tuberculosis (tb). the nurse would expect to note which finding? if lola harper had the following itemized deductions, should she use schedule a or the standard deduction? the standard deduction for her tax situation is $12,550. Beach dunes are usually made ofmarbleclayquartzcalcium carbonate 2. Solve based on the diagram below. What is the value of angle x? How do you know (what type of angle pairs are they)? an external firm that specializes in the creation, production, and/or placement of a marketing communications message is known as a(n) . Rewrite the expression 2(10+12) using the distributive property of multiplication over addition What the answer to this problem? which antiwar movement featured a wide variety of tactics, from mass demonstration to voter registration to nonviolent civil disobedience, and even to violent tactics such as the days of rage vandalism? Who in the military chain of command made the final official decision whether to use the atomic bomb? a. pilot paul tibbets b. president franklin roosevelt c. president harry truman d. general douglas macarthur the density of normal water (tghe hydrogens do not have neurons) at 20c is 0.9982 g/ml. calculate the density you would expect for heavy water by assuming the deuterium is the same size as normal hydrogen when it is poart of the water d. if a student was an undergraduate business major, what is the probability that the student intends to attend classes full-time in pursuit of an mba degree (to decimals)? when researching a population where it is impossible or impractical to compile a list of the elements, which sampling technique is appropriate to use? How did Pericles use the Delian League to Athens's advantage? Question 5(Multiple Choice Worth 2 points)(Appropriate Measures MC)The scores earned in a flower-growing competition are represented in the stem-and-leaf plot.0 51 0, 3, 72 4, 6, 83 24 5 8Key: 5|8 means 58What is the appropriate measure of variability for the data shown, and what is its value? The range is the best measure of variability, and it equals 18.5. The IQR is the best measure of variability, and it equals 45. The range is the best measure of variability, and it equals 45. The IQR is the best measure of variability, and it equals 18.5. delta diamonds had 5 one-carat diamonds available for sale this year: 1 purchased june 1 for $500, 2 purchased july 9 for $550 each, and 2 purchased september 23 for $600 each. on december 24, it sold one of the diamonds that was purchased on july 9. using a periodic specific identification, its inventory after the december 24 sale is . multiple choice question. $1,650 $2,250 $2,240 $2,300 $550 $2,200 Which of the following lines of poetry most clearly reflects a tone of mystery? "But when the trees bow down their heads, the wind is passing by." "He who kisses the joy as it flies lives in Eternity's sunrise." "The wind steals in and twirls the candle, the branches heave and brush the wall." "We wrote for the milk and the honey of kindness, and not for a name." the unit cell in a certain lattice consists of a cube formed by an anion, a, at each corner, an anion in the center, and a cation,x, at the center of each face. how many anions and cations are there in the unit cell? an antibody screen is performed, and all three tubes are negative after adding ahg. check cells are added, and the tubes are centrifuged. no agglutination occurs after the addition of check cells. what is the next course of action?