bioelectrical impedance analysis is a commercially available method used to estimate body fat percentage. the device applies a small potential between two parts of the patient's body and measures the current that flows through. with an estimate of the resistance individually of the muscle and fat between the two points, the composition of the tissue can be estimated. assume that the muscle and fat tissue can be modeled as resistors in parallel. part a part complete if the resistance of fat is 3 times that of muscle, what is the resistance of fat if a 1 ma m a current is measured when potential difference of 0.5 v v is applied to the patient's arm?

Answers

Answer 1

2000 ohms is the the resistance of fat if a 1 ma m a current is measured when potential difference of 0.5 v v is applied to the patient's arm.

How to solve for the resistance

we have r = resistance of the muscle

R = fat resistance

we are given R = 3r

such that the R total would be solved using ohms law:

We would have 3r² / 4r

= 0.75r

when we use the Ohm's law we would have the follwoing calculation

0.5 = 0.001 * 0.75 r

we are to solve for the value of r

0.5 = 0.00075r

divide through by:

r = 0.5 / 0.00075

= 666.667

Remember that R = 3r

R = 3 * 666.667

R = 2000 ohms

Read more on resistance here:https://brainly.com/question/17563681

#SPJ1


Related Questions

why do the phases of venus show that the solar system is in a heliocentric model instead of a geocentric model?

Answers

The phases of Venus show that the solar system is in a heliocentric model instead of a geocentric model because the heliocentric model states that the Sun is at the center of the solar system, while the geocentric model states that Earth is at the center of the universe.

The phases of Venus can only be explained in the heliocentric model because the planet is orbiting the Sun.The phases of Venus are an important piece of evidence supporting the heliocentric model proposed by Nicolaus Copernicus. The geocentric model was the widely accepted model of the universe until the 16th century when Copernicus proposed the heliocentric model, which suggested that the Sun is at the center of the solar system and the Earth and other planets orbit around it.

The phases of Venus show that it orbits the Sun and not the Earth because, as it orbits the Sun, different portions of the planet's sunlit side are visible from Earth. This can only occur in a heliocentric model because Venus is between the Earth and the Sun in its orbit, which causes it to pass through phases. Therefore, the phases of Venus are not consistent with a geocentric model, which suggests that Venus orbits the Earth.

Learn more about heliocentric at:

https://brainly.com/question/18403954

#SPJ11

two stationary point charges q1 and q2 are shown in the figure along with a sketch of some field linesrepresenting the electric field produced by them. what can you deduce from the sketch?

Answers

From the sketch, we can deduce that the two charges q1 and q2 are of opposite signs, as field lines start at the positive charge q1 and end at the negative charge q2. The field lines also indicate that the magnitude of the electric field produced by q1 is larger than that of q2.

Additionally, the field lines show that the electric field lines near the charges are denser, indicating a stronger electric field intensity near the charges. The direction of the electric field points from q1 to q2, which is consistent with the direction of the force that a positive test charge would experience if placed in the field. The field lines also show that the electric field is radial, i.e., the field lines point directly away from or towards each charge in a straight line, which is a characteristic of the electric field produced by a point charge. Finally, the density of the field lines decreases with distance from the charges, indicating that the electric field strength decreases with distance from the charges, following an inverse-square law.

Learn more about electric field at: https://brainly.com/question/14372859

#SPJ11

the intensity of the sound of a television commercial is 10 times greater than the intensity of the television program it follows. by how many decibels does the loudness increase?

Answers

The television commercial loudness increases by 10 decibels.

Increase in the Intensity of sound

The decibel (dB) scale is a logarithmic measure of sound intensity. The intensity of a sound is measured in watts per square meter and the decibel scale is a way to express the relative loudness of a sound, compared to a reference level.

A 10 dB increase in intensity is a 10-fold increase in sound power. This means that a sound with an intensity of 10 watts per square meter is 10 times louder than a sound with an intensity of 1 watt per square meter.

Learn more about Intensity of sound here:

https://brainly.com/question/17062836

#SPJ1

HELP ME PLEASE!!!
Which 2 statements are true about this chemical reaction that forms acid rain?

Answers

However, in general, acid rain is formed when sulphur dioxide (SO2) and nitrogen oxides (NOx) are emitted into the atmosphere by human activities, such as burning fossil fuels.

Which of the following is incorrect about the main cause of acid rain?

The erroneous statement among the following is : Acid rain is largely because to oxides of nitrogen and sulphur The greenhouse effect is to blame for the world's warming. Infrared radiation from the sun cannot reach earth due to the ozone layer.

What does acid rain consist of ?

Nitric and sulphuric acids are created when the gases nitrogen oxides and sulphur dioxide interact with the minute droplets of water in clouds. The rain from these clouds falls as very weak acid known as 'Acid rain'.

To know more about radiation visit:-

https://brainly.com/question/28202771

#SPJ1

Question:

"Which two of the following statements are true about the chemical reaction that forms acid rain?

a. Sulfur dioxide and nitrogen oxides react with water to form sulfuric acid and nitric acid.

b. Acid rain can cause damage to buildings and statues made of limestone or marble.

c. Acid rain is only a problem in areas with a high population density.

d. Acid rain has no effect on freshwater ecosystems."

an unbelted victim in a car accident will continue to move in the same direction and with the same speed until the dashboard causes a change in motion. this best exemplifies

Answers

According to Newton's first law, an unbelted victim in a car accident will continue to move in the same direction and with the same speed until the dashboard causes a change in motion.

Inertia is the tendency of an object to remain in motion in the absence of an unbalanced force. It is the property of an object to resist any change in motion unless acted upon by an external force.

The dashboard applies an external force that changes the direction and speed of the victim. This is because the person has no external forces acting on them to cause them to stop. Since they were in motion at the time of the accident, they will continue in that motion unless acted upon by another force, such as the dashboard, until they come to a stop or another force acts upon them.

Therefore, the best exemplifies the law of inertia. The law of inertia states that an object at rest will remain at rest, and an object in motion will remain in motion at a constant velocity unless acted upon by an external unbalanced force.

Learn more about the speed at

brainly.com/question/24091038

#SPJ11

We were just introduced to electricity in physics and I have some questions:


1. Since electrons can be transferred from our hair to the balloon, can electrons also be transferred from the balloon to our hair? (Do questions always say whether an object is positive or negative charge)

2. Do electrons stay in place since balloons are rubber insulators?

3. What point do neutrons serve? Are they just there?

4. Are objects in constant exchange of energy with one another? Whenever they come in contact they exchange electrons until equal?

Answers

1 - Since electrοns can be transferred frοm οur hair tο the ballοοn , electrοns cannοt be transferred frοm ballοοn tο οur hair because. This is an illustratiοn οf  charging by cοnductiοn.

2 - Since the rubber οn the ballοοn is significantly less cοnductive than the hair, electrοns will nοt easily escape the ballοοn because οf this.

3 - Neutrοns are electrically neutral , neutrοns dοesn't participate in this prοcess.

What is charging by cοnductiοn?  

A charged οbject must cοme intο cοntact with a neutral οbject tο cοnduct electricity. As a result, when twο charged cοnductοrs cοme intο cοntact, the charge is split between the twο cοnductοrs, charging the uncharged cοnductοr.

When twο neutral οbjects are rubbed against οne anοther, electrοns are transferred. The οbject that has a strοnger affinity fοr electrοns will take electrοns frοm the οther οbject, and the twο becοme charged in οppοsitiοn. In this instance, the electrοns frοm the hair are taken up by the ballοοn , which nοw has an excess οf electrοns and a negative charge cοmpared tο the hair's current electrοn shοrtage and pοsitive charge.

2- Since the rubber οn the ballοοn is significantly less cοnductive than the hair, electrοns will nοt easily escape the ballοοn because οf this.

3- Neutrοns are electrically neutral , neutrοns dοesn't participate in this prοcess.

4-Insulating materials may becοme electrically charged when they cοme intο cοntact with οne anοther. Negatively charged electrοns can "rub οff" οne material and "rub οn" tο anοther. After bοth things have the same quantity οf οppοsite charges, the substance that gets electrοns becοmes negatively charged, and the material that lοses electrοns becοmes pοsitively charged.

To know more about charging by conduction , visit;

brainly.com/question/10254645

#SPJ1

find the net force on a 30.0 nc charge located at the origin by two other charges. one is -50.0 nc located at (-5.0 m, 2.0 m) and 40.0 nc located at (3.0 m, 1.0 m).

Answers

The net force on a 30.0 nc charge located at the origin by two other charges is the vector sum of the forces exerted by the two other charges. The force exerted by the first charge, -50.0 nC located at (-5.0 m, 2.0 m), is given by:

F1 = (k*q1*q2)/r2, where

k = 8.99 x 109 N m2/C2q1 = -50.0 ncq2 = 30.0 ncr = square root of (5.02 + 2.02) = 5.385

Therefore,

F1 = (8.99 x 109 N m2/C2)*(-50.0 nc)*(30.0 nc)/(5.3852) = 2.38 x 10-2 N

Similarly, the force exerted by the second charge, 40.0 nc located at (3.0 m, 1.0 m), is given by:

F2 = (k*q1*q2)/r2, where

k = 8.99 x 109 N m2/C2q1 = 40.0 ncq2 = 30.0 ncr = square root of (3.02 + 1.02) = 3.162

Therefore,

F2 = (8.99 x 109 N m2/C2)*(40.0 nc)*(30.0 nc)/(3.1622) = 4.58 x 10-2 N

The net force is the vector sum of F1 and F2 and can be calculated as follows:

F net = F1 + F2 = 2.38 x 10-2 N + 4.58 x 10-2 N = 7.00 x 10-2 N

Therefore, the net force on a 30.0 nc charge located at the origin by two other charges is 7.00 x 10-2 N.

To know more about Force refer here:

https://brainly.com/question/13191643#

#SPJ11

a spherical capacitor has vacuum between its conducting shells and a capacitance of 125 pf . the outer shell has inner radius 9.00 cm . what is the outer radius of the inner shell? express your answer with the appropriate units.

Answers

For a spherical capacitor with a capacitance of 125 and a vacuum between its conducting shells, the outer radius of the inner shell is around 5.60 cm.

The capacitance of a spherical capacitor is given by:

C = 4πε₀[(r₁r₂)/(r₂-r₁)]

where C is the capacitance, ε₀ is the electric constant (8.85 x [tex]10^{-12}[/tex] F/m), r₁ is the radius of the inner shell, and r₂ is the radius of the outer shell.

In this case, we know that the capacitance C = 125 pF (picoFarads), r₂ = 9.00 cm, and we want to find r₁.

We can rearrange the equation to solve for r₁:

r₁ = (C × r₂)/(4πε₀ + C)

Substituting the values:

r₁ = (125 x [tex]10^{-12}[/tex] F × 0.09 m) / (4π × 8.85 x [tex]10^{-12}[/tex] F/m + 125 x [tex]10^{-12}[/tex] F)

r₁ ≈ 5.60 cm

Therefore, the outer radius of the inner shell is approximately 5.60 cm.

To learn more about the capacitor at

https://brainly.com/question/17176550

#SPJ4

two 4.0cm*4.0cm metal plates are separated by a 0.20-mm-thick piece of teflon. a. what is the capacitance? b. what is the maximum potential difference between the plates?

Answers

The capacitance of two metal plates separated by a 0.20-mm-thick is approximately 0.25 pF  and the maximum potential difference between the plates is 8.4 kV.

a. The capacitance of two metal plates separated by a 0.20-mm-thick piece of Teflon is approximately 0.25 pF (picofarad).

b. The maximum potential difference between the two metal plates is determined by the permittivity of the dielectric material, which in this case is Teflon.

The permittivity of Teflon is about 2.1 and the capacitance of the plates is 0.25 pF, so the maximum potential difference between the plates can be calculated using the equation:

Vmax = (permittivity * Capacitance) / Area.

Therefore, the maximum potential difference between the plates is 8.4 kV.

For more such questions on capacitance , Visit:

https://brainly.com/question/13578522

#SPJ11

Please help. Due at Midnight!

Answers

The magnitude and direction of the net force on the center charge is 3.929 x 10⁻⁴ N.

What is unit of charge?

The unit of charge is the Coulomb (C). It is named after French physicist Charles-Augustin de Coulomb and is defined as the amount of electric charge that flows through a circuit when a current of one ampere flows for one second. One Coulomb is also equivalent to the charge on approximately 6.24 x 10¹⁸ electrons. The Coulomb is one of the seven base SI units (International System of Units) and is used to measure electric charge in physics and engineering.

So, the magnitude of the net force on the center charge is 3.929 x 10⁻⁴ N. Since F12 is directed towards the left, and F23 is directed towards the right, the net force is also directed towards the left. Therefore, the direction of the net force on the center charge is to the left.

According to Coulomb's law to calculate the force exerted by each of the other charges on the center charge, and then add them vectorially.

Let's call the left charge Q1, the center charge Q2, and the right charge Q3.

The force exerted on Q2 by Q1 is given by:

F₁₂ = k * |Q1| * |Q2| / r₁₂²

where k is Coulomb's constant, |Q1| and |Q2| are the magnitudes of the charges, and r₁₂ is the distance between them. Since Q1 is positive and Q2 is negative, the force F₁₂ is attractive and directed towards Q1. Because the distance between them is 2m, we can say:

F₁₂ = 9 x 10⁹ Nm²/C² * |52 x 10⁻⁶ C| * |3.10 x 10⁻⁶ C| / (2m)²

= 3.468 x 10⁻⁴ N (attractive)

The force exerted on Q2 by Q3 is given by:

F₂₃ = k * |Q2| * |Q3| / r₂₃²

where |Q3| is positive, and |Q2| is negative, so the force F23 is repulsive and directed away from Q3. The distance between them is also 2m, so:

F₂₃ = 9 x 10⁹ Nm²/C² * |3.10 x 10⁻⁶ C| * |68 x 10⁻⁶ C| / (2m)²

= 5.383 x 10⁻⁵ N (repulsive)

To find the net force on Q2, we need to add these two forces vectorially. Since they act along the same line, we can simply subtract their magnitudes:

Fnet = |F₁₂| - |F₂₃|

= 3.468 x 10⁻⁴ N - 5.383 x 10⁻⁵N

= 3.929 x 10⁻⁴ N.

To know more about Coulomb's law, visit:

https://brainly.com/question/9261306

#SPJ1

two students sit on a seesaw in a way that makes it balance and not move. when a third person pushes down on one side, that side moves down. what caused the seesaw to move?

Answers

The seesaw moved when a third person pushed down on one side. This is because the seesaw is a simple machine that consists of a long plank balanced in the middle with a pivot point that allows it to move up and down.

When the two students sit on the seesaw in a way that makes it balance and not move, they are evenly distributed on each end. However, when the third person pushes down on one side, this distribution of weight becomes unequal, and the seesaw moves in the direction of the heavier side.

The heavier end of the seesaw moves down while the lighter end moves up. This is because the heavier side creates more force, or torque, on the pivot point, causing the seesaw to tilt towards that side.

As a result, the seesaw moves and is no longer in balance.

Learn more about balance and move at

brainly.com/question/14160688  

#SPJ11 

A resistor and a capacitor are connected in series across an ideal battery. At the moment contact is made with the battery the voltage across the capacitor is
a. equal to the battery's terminal voltage. b. less than the battery's terminal voltage, but greater than zero. c. zero.

Answers

When a resistor and a capacitor are connected in series across an ideal battery, the voltage across the capacitor is zero at the moment contact is made with the battery.

The correct option is c.

An ideal battery is a voltage source that delivers a constant voltage regardless of the load resistance or current drawn from it.

An ideal battery can maintain a steady voltage regardless of the amount of current being drawn from it.

In real-life batteries, there is always some internal resistance, which causes the voltage to drop as the current increases.

A resistor is an electrical component that opposes or limits the flow of electrical current. It has two terminals and can be made of various materials like carbon, metal, and ceramic. It is used in various applications, including voltage dividers, current limiting, and biasing.

A capacitor is an electronic component that stores energy in an electric field between two charged conductors. It has two terminals and is made of two conducting plates separated by an insulating material called a dielectric.

Capacitors are used in various applications, including energy storage, timing circuits, and power conditioning.

To Learn more :

https://brainly.com/question/17134302

#SPJ11

if you hold a 1.85 kg k g package by a light vertical string, what will be the tension in this string when the elevator accelerates as in the previous part?

Answers

The tension in the string of a 1.85 kg package held by a light vertical string will depend on the acceleration of the elevator. When the elevator accelerates, the force of acceleration on the package will be equal and opposite to the tension in the string, causing the tension to increase.

The equation for tension in a string is:

Tension = Mass x Acceleration

Therefore, in this case, the tension in the string is equal to 1.85 kg x Acceleration.

If we assume that the acceleration of the elevator is a constant rate, then the tension in the string can be calculated by multiplying the mass of the package by the acceleration of the elevator.

To sum up, the tension in the string of a 1.85 kg package held by a light vertical string will depend on the acceleration of the elevator. If the acceleration of the elevator is a constant rate, then the tension in the string can be calculated by multiplying the mass of the package by the acceleration of the elevator.

For more such questions on Tension.

https://brainly.com/question/13397436#

#SPJ11

a ball of mass is dropped. what is the formula for the impulse exerted on the ball from the instant it is dropped to an arbitrary time later?

Answers

The formula for the impulse exerted on the ball from the instant it is dropped to an arbitrary time later is:

Impulse = (Final momentum - Initial momentum)

What is impulse?

Impulse is a vector quantity having both magnitude and direction, whereas momentum is a vector quantity, but the impulse is not equal to momentum. The impulse is the change in momentum.

If a ball of mass m is dropped from rest, then its initial momentum is zero.

The final momentum of the ball after falling for time t is:

Final momentum = mv

Where v is the velocity of the ball after falling for time t.

Therefore, the impulse exerted on the ball from the instant it is dropped to an arbitrary time later is:

Impulse = (mv - 0) = mv

To know more about impulse:

https://brainly.com/question/14073258

#SPJ11

A wooden brick with mass M is suspended at the end of cords as shown above. A bullet with mass m is fired toward the brick with speed v0. The bullet collides with the brick embedding itself into the brick. The brick-bullet combination will swing upward after the collision. Consider the brick, earth, and bullet as part of a system. Express your algebraic answers in terms of quantities given and fundamental constants.

(a) During the collision of the brick and the bullet, compare the magnitude and direction of the impulse acting on the brick to the impulse acting on the bullet. Justify your answer.

(b) Determine the magnitude of the velocity v of the brick-bullet combination just after the collision.

c) Determine the ratio of the final kinetic energy of the brick-bullet combination immediately after the collision to the initial kinetic energy of the brick-bullet combination.

(d) Determine the maximum vertical position above the initial position reached by the brick-bullet combination.
BoldItalicUnderline

Answers

Answer: the answer given below

(a) Explanation: The impulse on an object is given by the change in momentum of the object. Before the collision, the bullet has momentum p1 = mv0 and the brick has momentum p2 = 0, since it is stationary. After the collision, the combined bullet-brick system has momentum p3.

Conservation of momentum requires that the total momentum before the collision is equal to the total momentum after the collision:

p1 + p2 = p3

mv0 + 0 = (m + M)V

where V is the velocity of the combined bullet-brick system after the collision. Solving for V, we get:

V = (mv0) / (m + M)

The impulse on the bullet during the collision is equal to the change in momentum of the bullet:

J_bullet = p3 - p1 = (m + M)V - mv0

Substituting the expression for V we found earlier:

J_bullet = (m + M)(mv0) / (m + M) - mv0 = 0

Therefore, the impulse on the bullet is zero during the collision.

On the other hand, the impulse on the brick during the collision is:

J_brick = p3 - p2 = (m + M)V - 0 = (m + M)(mv0) / (m + M) = mv0

Therefore, the magnitude of the impulse acting on the brick is equal to the initial momentum of the bullet, mv0, and it is in the same direction as the initial velocity of the bullet.

In summary, during the collision of the bullet and the brick, the impulse acting on the bullet is zero, while the impulse acting on the brick is mv0 in the direction of the initial velocity of the bullet.

(b) We can use the principle of conservation of momentum to solve for the velocity of the brick-bullet combination just after the collision. The total momentum of the system (bullet, brick, and Earth) is conserved before and after the collision. Initially, only the bullet has momentum, which is given by p1 = m*v0, and the momentum of the brick and Earth is zero. After the collision, the bullet becomes embedded in the brick, and the combined system of the brick-bullet has momentum p2. Since the momentum of the Earth is negligible compared to that of the bullet and brick, we can treat the system as closed and apply conservation of momentum:

p1 = p2

m*v0 = (M + m)*v

where v is the velocity of the combined system just after the collision.

Solving for v, we get:

v = (m*v0) / (M + m)

Therefore, the magnitude of the velocity of the brick-bullet combination just after the collision is:

|v| = |(m*v0) / (M + m)|

The direction of the velocity is upward, as the system swings up after the collision due to the conservation of momentum.

(c) The initial kinetic energy of the system is the kinetic energy of the bullet just before the collision, which is given by:

KE1 = (1/2)mv0^2

The final kinetic energy of the system is the kinetic energy of the combined brick-bullet system just after the collision, which is given by:

KE2 = (1/2)*(M + m)*v^2

Substituting the expression we found for v:

KE2 = (1/2)(M + m)[(mv0) / (M + m)]^2

KE2 = (1/2)(m*v0^2) / (1 + M/m)

The ratio of the final kinetic energy to the initial kinetic energy is:

KE2 / KE1 = [(1/2)(mv0^2) / (1 + M/m)] / [(1/2)mv0^2]

KE2 / KE1 = 1 / (1 + M/m)

Therefore, the ratio of the final kinetic energy of the brick-bullet combination immediately after the collision to the initial kinetic energy of the brick-bullet combination is:

KE2 / KE1 = 1 / (1 + M/m)

(d)To determine the maximum vertical position reached by the brick-bullet combination, we can use conservation of energy, assuming there is no energy loss due to friction or other dissipative forces. At the maximum height, the kinetic energy of the system is zero, and all the initial kinetic energy has been converted to potential energy due to the height above the initial position.

The initial total energy of the system is the sum of the initial kinetic energy of the bullet and the gravitational potential energy of the brick:

E1 = (1/2)mv0^2 + Mgh1

where h1 is the initial height of the brick above the ground, and g is the acceleration due to gravity.

At the maximum height, the final total energy of the system is the potential energy due to the height above the ground:

E2 = (M + m)gh2

where h2 is the maximum height reached by the brick-bullet combination above the initial position.

Since there is no energy loss, we can set the initial energy equal to the final energy:

E1 = E2

Substituting the expressions for E1 and E2 and solving for h2, we get:

(M + m)gh2 = (1/2)mv0^2 + Mgh1

h2 = [(1/2)mv0^2 + Mgh1] / [(M + m)*g]

Simplifying, we get:

h2 = (1/2)v0^2 / g + h1(M/m) / (1 + M/m)

Therefore, the maximum vertical position above the initial position reached by the brick-bullet combination is:

h2 = (1/2)v0^2 / g + h1(M/m) / (1 + M/m)

Hope this helps :)

an n-type piece of silicon experiences an electric field equal to 0.1v/m. (a) calculate the velocity of electrons and holes in this material

Answers

In an n-type piece of silicon, the electric field causes the electrons to accelerate due to the attractive force between the negatively charged electrons and the positively charged electric field. This acceleration causes the electrons to reach a velocity of V = E/μ, where E is the electric field (0.1V/m) and μ is the mobility of electrons in silicon (1350 cm2/V⋅s). Therefore, the velocity of electrons in this material would be equal to 0.1V/m/1350cm2/V⋅s = 0.0741 cm/s.

The holes, on the other hand, experience a repulsive force due to the positive electric field. This causes the holes to decelerate, with a velocity of V = -E/μ. Therefore, the velocity of holes in this material would be equal to -0.1V/m/1350cm2/V⋅s = -0.0741 cm/s.

Know more about  electric field here:

https://brainly.com/question/8971780

#SPJ11

the cantilevered beam is made of a36 steel and is subjected to the loading shown. determine the displacement at b using the method of superposition. for a36 steel beam, the moment of inertia i

Answers

Thus using method of superposition, the total displacement is 0.0276.

A36 steel beam is used Cantilever beam is loaded. The moment of inertia is I. For A36 steel beam, I = 6667 in4 (approx.)As per the method of superposition, the total displacement of the beam at point B is given as follows:δtotal = δP + δWWhere,δP is the displacement of point B due to the point loadδW is the displacement of point B due to the uniformly distributed load.

Considering point load,P = 1500 lb. Distance of the point load from point B = 5 ft. Thus, the moment at point B due to point load can be calculated as follows: MBP = PL = 1500 × 5 = 7500 lb-ft. Similarly, considering uniformly distributed load,W = 200 lb/ft. Thus, the moment at point B due to uniformly distributed load can be calculated as follows:Mbw = (wL2)/12Where,L is the length of the beam= 10 ft

Therefore, Mbw = (200 × 102)/12 = 1667 lb-ft (approx.)Thus, total moment at point B,M = MBP + MBW= 7500 + 1667= 9167 lb-ft. Thus, using the formula for deflection of cantilever beam,δP = (PbL2)/(2EI) = (1500 × 52)/(2 × 29 × 106 × 6667) = 0.0026 inδW = (WbL3)/(3EI) = (200 × 5103)/(3 × 29 × 106 × 6667) = 0.024 in

Therefore, the displacement at point B is 0.0276 in.

To know more about superposition, refer here:

https://brainly.com/question/12493909#

#SPJ11

To determine the location of her center of mass, a physics student lies on a lightweight plank supported by two scales 2.50m apart, as indicated in the figure . If the left scale reads 290 N, and the right scale reads 112 N. What is the student's mass and find the distance from the student's head to her center of mass.

Answers

The location of her centre of mass, a physics student lies on a lightweight plank supported by two scales 2.50m apart, as indicated in the figure. If the left scale reads 290 N and the right scale reads 112 N The student's mass is approximately 41 kg, and the distance from her head to her centre of mass is approximately 0.696 m.

To determine the student's mass, we can sum up the readings from both scales, which are measures of force (Newtons) and then convert it to mass using the gravitational acceleration (g = 9.81 m/s²).
Step 1: Calculate the total force acting on the plank:
Total Force = Force_left_scale + Force_right_scale
Total Force = 290 N + 112 N
Total Force = 402 N
Step 2: Convert the total force to mass using gravitational acceleration:
Mass = Total Force / g
Mass = 402 N / 9.81 m/s²
Mass ≈ 41 kg
Now, to find the distance from the student's head to her centre of mass, we'll use the principle of torque equilibrium.
Step 3: Set up the torque equation:
Torque_left_scale = Torque_right_scale
Force_left_scale × Distance_left_scale = Force_right_scale × Distance_right_scale
Let x be the distance from the student's head to her centre of mass. Then, the distance from the left scale to the centre of mass is x, and the distance from the right scale to the centre of mass is (2.50 - x).
Step 4: Plug in the known values and solve for x:
290 N × x = 112 N × (2.50 - x)
Step 5: Simplify the equation and solve for x:
290x = 112(2.50) - 112x
290x + 112x = 112(2.50)
402x = 280
x ≈ 0.696 m
The student's mass is approximately 41 kg, and the distance from her head to her centre of mass is approximately 0.696 m.

For more such questions on  centre of mass

brainly.com/question/28021242

#SPJ11

a semi-circular gate on an inclined wall is in contact with water. calculate the resultant force of the water on the gate

Answers

The resultant force of the water on the semi-circular gate on an inclined wall can be calculated using the equations of hydrostatics.

R = √([tex]F1^2 + F2^2 - 2*F1*F2*cos[/tex])α, where 'R' is the resultant force and 'α' is the angle of the wall.

First, determine the pressure of the water at any given point along the gate. To do this, multiply the density of the water, 'ρ', by the acceleration of gravity, 'g', and then the vertical height of the water relative to the gate, 'h', to get the pressure 'p':

p = ρ*g*h

Second, determine the force acting on the gate. This is done by multiplying the pressure with the area of the gate, 'A':

F = p*A

Finally, find the resultant force, 'R', by adding the forces together and taking into account the angle of the wall:

R = √([tex]F1^2 + F2^2 - 2*F1*F2*cos[/tex])α

where α is the angle of the wall.

By following these steps, you can calculate the resultant force of the water on the semi-circular gate on an inclined wall.

For more questions related to Force.

https://brainly.com/question/13191643

#SPJ11

when lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to

Answers

When lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to 0.99 ohms.

Resistance refers to the electrical property of a circuit component, such as a light bulb, that resists the flow of electrical current through it.

Ohm's law is a fundamental principle in electrical engineering that relates the resistance, voltage, and wattage in a circuit. It states that the resistance (R) is equal to the voltage (V) divided by the wattage (W).

W = 100 watts, V = 110 volts.

Use Ohm’s law to calculate the resistance (R):

R = V/W = 110/100 = 0.99 ohms.


Therefore, when a 100-watt light bulb is operating on a 110-volt household circuit, its resistance is approximately 0.99 ohms.

To know more about resistance click here:

https://brainly.com/question/11431009

#SPJ11

in u.s. customary units, air pressure is measured in pounds per square inch. in the metric system, it is measured in pascals, and one pascal is equal to

Answers

In the metric system, air pressure is measured in pascals. One pascal is equal to a force of one newton per square meter.

Air pressure can be measured using different units. Pascal is a unit of pressure, defined as one newton per square meter. This unit is named after Blaise Pascal, a French mathematician, physicist, and philosopher who made important contributions to the fields of hydrodynamics and hydrostatics.

In the US customary system, air pressure is measured in pounds per square inch (psi), while in the International System of Units (SI), it is measured in pascals (Pa). The unit psi is used to measure pressure in liquids and gases, and it is defined as the amount of pressure exerted by a force of one pound-force per square inch.

Learn more about pascal unit at https://brainly.com/question/30777634

#SPJ11

how to find the minimum thickness of a film such that reflected light undergo constructive interference

Answers

The minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.

The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),

where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.

For example, if the order of interference is 3, the wavelength of the light is 600 nm, and the index of refraction is 1.4,

the minimum thickness of the film for constructive interference of reflected light would be t = 3*600/(2*1.4) = 850 nm.

Constructive interference of reflected light occurs when the phase difference between the two waves is equal to an integral multiple of 2π.

This can be determined using the formula Δφ = (2π*m)/(λ*n), where Δφ is the phase difference, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.

To achieve constructive interference, the minimum thickness of the film can be determined by ensuring that the phase difference is equal to an integral multiple of 2π.

The minimum thickness of a film required for constructive interference of reflected light can be calculated using the formula t = m*λ/(2*n),

where t is the minimum thickness of the film, m is the order of interference, λ is the wavelength of the light, and n is the index of refraction of the film.

Constructive interference can be achieved by ensuring that the phase difference between the two waves is equal to an integral multiple of 2π.

to know more about light refer here:

https://brainly.com/question/15200315#

#SPJ11

2. how many times a minute does a boat bob up and down on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s?

Answers

The boat will bob up and down on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s once every 7.50 seconds.

To solve the given question, we must use the formula:

n= v/f

Where: v is the velocity of the wave (in m/s)f is the frequency of the wave (in Hz)n is the number of cycles per second

Therefore, the frequency of the wave (in Hz) can be calculated by using the formula:

f= v/λ

where: v is the velocity of the wave (in m/s)λ is the wavelength of the wave (in m)

The frequency of the wave is 0.1333 Hz (approx).

Now, the number of cycles per second (n) is: n = v/λ

We can solve for n by dividing the velocity of the wave by the wavelength of the wave.

Therefore,

n= v/λ= (4.80 m/s) / (36.0 m)= 0.1333 Hz

So, the boat bob up and down 0.1333 times a minute on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s.

1 Hz = 60 seconds,

0.1333 Hz = 7.50 seconds.

To know more about Frequency, refer here:

https://brainly.com/question/29739263#

#SPJ11

7) you drop a stone down a well that is 9.5 m deep. how long is it before you hear the splash? the speed of sound in air is 343 m/s and air resistance is negligible

Answers

If you drop a stone down a well that is 9.5 m deep, it will take approximately 0.028 seconds for you to hear the splash. This is because the speed of sound in air is 343 m/s, and air resistance is negligible.


The question is about finding the time it will take for the sound of the splash to reach the surface of the well. Given data:

Depth of the well = 9.5 m

Speed of sound in air = 343 m/s

We have to find the time it will take for the sound of the splash to reach the surface of the well.

Let's assume that "t" is the time that the sound of the splash takes to reach the surface of the well.

Using the formula:

t  = Distance/Speed

Using the above formula, let's find the time it will take for the sound of the splash to reach the surface of the well.

Distance = Depth of the well = 9.5 m

Speed = Speed of sound in air = 343 m/s

So, the time is:

t = Distance/Speed

t = 9.5/343

t = 0.0277 s ≈ 0.028 s

Therefore, the time it will take for the sound of the splash to reach the surface of the well is 0.028 s

Learn more about time of falling water splash at https://brainly.com/question/21323527

#SPJ11

A skydiver of mass 95kg ,before opening his parachute, falls at t1 with V1= 11m/s and at t2 with t2 v2=27m/s; supposing friction is zero, find the distance covered between t1 and t2

Answers

The skydiver covered a distance of approximately 94.9 meters before opening his parachute between t1 and t2, assuming no air resistance or friction.

v = final velocity = v2 = 27 m/s

u = initial velocity = v1 = 11 m/s

a = acceleration = g = 9.8 m/[tex]s^2[/tex]

s = (v² - u²) / 2a

s = (27² - 11²) / (2 x 9.8) = 94.9 meters

Resistance measures an item's potential to impede the drift of electrical present-day through it. it's far measured in ohms (Ω). Resistance is decided by way of the bodily residences of an item, along with its dimensions, material, and temperature. while electric-powered present-day flows thru a conductor, it encounters resistance that slows down its float. This resistance is as a result of the collisions among electrons and the atoms inside the conductor.

Resistance can be laid low with changes inside the bodily properties of the conductor, such as duration, cross-sectional region, or temperature. an extended or narrower conductor may have higher resistance, even as a much broader conductor could have decreased resistance. understanding resistance is critical for designing and working electrical circuits. with the aid of controlling the resistance of a circuit, engineers can make sure that the appropriate amount of current flows to electricity the devices linked to it.

To know more about Resistance visit here:

brainly.com/question/11431009

#SPJ4

A dog can hear sounds in the range from 15
to 50,000 Hz.
What wavelength corresponds to the lower
cut-off point of the sounds at 20◦C where the
sound speed is 344 m/s?
Answer in units of m.

Answers

Explanation:

Speed of sound is 344

The frequency corresponding to the lower cut-off point is the lowest frequency which his 15Hz

F=15Hz

The relationship between the wavelength, speed and frequency is given as

v=fλ

Then,

λ=v/f

λ=v/f

λ=344/15

λ=22.93m

a system releases 690 kj of heat and does 110 kj of work on the surroundings. part a what is the change in internal energy of the system?

Answers

A  system releases 690 kj of heat and does 110 kj of work on the surroundings then part a what i the change in internal energy of the system  -800 kJ.


The change in internal energy of the system can be calculated using the formula

ΔU = Q - W,

where ΔU is the change in internal energy, Q is the heat exchanged, and W is the work done.

In this case, the system releases 690 kJ of heat (Q = -690 kJ) and does 110 kJ of work on the surroundings (W = 110 kJ).

So, ΔU = -690 kJ - 110 kJ = -800 kJ.

The change in internal energy of the system is -800 kJ.

Know more about   internal energy   here:

https://brainly.com/question/30207866

#SPJ11

calculate the average force on the person if he is stopped by a padded dashboard that compresses an average of 1.00 cm. calculate the average force on the person if he is stopped by an air bag that compresses an average of 15.0 cm.

Answers

The average force on the person if they are stopped by an airbag that compresses an average of 15.0 cm is approximately 70,000 N.

To calculate the average force on a person,

Average force = (change in momentum) / (time interval)

Assuming that the person's initial velocity is constant, we can simplify the formula to,

Average force = (mass of the person) x (change in velocity) / (time interval)

Now, let's consider the two scenarios,

Stopped by a padded dashboard that compresses an average of 1.00 cm:

Assuming the person's initial velocity is known and constant, we need to know the time interval it takes for the person to stop after hitting the dashboard. Without this information, we cannot calculate the average force.

Stopped by an airbag that compresses an average of 15.0 cm:

The time interval for an airbag to deploy and cushion the person's impact is typically very short (about 0.03 seconds), so we can assume that the time interval is negligible in this case. Therefore, we can use the simplified formula above.

Let's assume the mass of the person is 70 kg and their initial velocity is 30 m/s. The change in velocity is the final velocity (0 m/s) minus the initial velocity (30 m/s), which is -30 m/s. The negative sign indicates that the person's velocity is decreasing.

Using the formula,

Average force = (mass of the person) x (change in velocity) / (time interval)

= (70 kg) x (-30 m/s) / (0.03 s)

= -70,000 N

To know more about average force, here

brainly.com/question/29754124

#SPJ4

a brick is falling from the roof of a three-story building. how many force vectors would be shown on a free-body diagram? name them

Answers

A brick is falling from the roof of three story building then free-body diagram would show only one force vector, which is the force of gravity acting on the brick.

A free-body diagram is used to graphically represent the forces acting on an object. It shows all of the forces acting on an object and can be used to analyze the motion of an object.

A free-body diagram for a falling brick would include two force vectors: Gravity or Weight.

If we consider only the brick and neglect air resistance, then there are two force vectors that would be shown on a free-body diagram of the brick:Force of gravity: The force of gravity, which pulls the brick downwards with a magnitude of its weight. This force is always present and directed downwards towards the center of the Earth. Normal Force: The normal force, which is the force exerted by the roof or any surface in contact with the brick that prevents it from falling through the surface. As the brick is falling, there is no contact force from the roof, so the normal force is zero.

So, in this scenario, the free-body diagram would show only one force vector, which is the force of gravity acting on the brick.

To lean more about the 'force vectors':

https://brainly.com/question/30893090

#SPJ11

A solid cylinder of mass M = 1.25 kg and radius R = 13.5 cm pivots on a thin fixed frictionless bearing a string wrapped around the cylinder pulls downward with a force of F = 7.259 N

What is the magnitude of the angular acceleration of the cylinder?
86.03259 rad/s^2

Consider that instead of force F, a block with mass 0.74 kg with force = 7.259 N is attached to the cylinder with a mass less string.
What is now the magnitude of the angular acceleration of the cylinder
39.3943 rad/s^2
How far does the mass M travel downward before T equals 0.49S and T equals 0.69 S.
0.62755 m
The cylinder is changed to one with the same mass and radius but a different moment of inertia starting from mass starting from rest. The mass is now moved. The distance of 0.448 mass in the time interval of 0.47 seconds.
Find the Inertia of the new cylinder​

Answers

The inertia of the new cylinder is  0.0566 kgm². Other answers provided are correct.

How to find inertia?

The moment of inertia of the new cylinder can be calculated using the formula:

I = (M × d²) / (4 × Δθ)

Where:

M = mass of the cylinder

d = distance moved by the mass

Δθ = change in angular displacement (in radians)

Substituting the given values:

I = (1.25 × 0.448²) / (4 × 0.47)

I = 0.0566 kgm²

Therefore, the moment of inertia of the new cylinder is 0.0566 kgm².

Find out more on moment of inertia here: https://brainly.com/question/3406242

#SPJ1

Other Questions
what term is used to refer to crimes committed by individuals in the course of their daily business activities? select one: a. professional crime b. organized crime c. index crime d. white-collar crime what is the vpg given the following information: 1,000 tours; 85% show rate; 20% net closing; $20,000 average sale price. the vpg is $ . Can anyone help me with this? i have 6 problems like this and I don't know how to solve them.1. y=x+4 y = 3x 2. x=-2y+1 x-y=-53. y=x-7 2x+y=84. y=3x-6 -3x+y=-65. x+2y=200 x=y+506. 4x+3y=1 x=1-yIts Solving Using Substitution. It's also due tomorrow so please help. in the context of the poem what does it mean to be alone? Why does the speaker feel so alone? How does it affect them? cite evidence from this text, your own experience and other literature are or history in your answer. in the poem i started early took my dog the calculation of the contingent deferred sales load upon the redemption of a mutual fund is based on if oil executives read in the newspaper that massive new oil supplies have been discovered under the pacific ocean but will likely only be useful in 10 years, what is likely to happen to the supply of oil today? top management is also known as first-line management because it deals with key managerial decisions on a priority basis. group of answer choices true false potassium nitrate is used for a variety of applications, including fertilizer, rocket fuel, and fireworks. how many formula units of potassium nitrate are in a 25 g sample? How did some justify the actions of the Indian Removal act?Question 3 options:That is was necessary for the survival of the United States of America.Rationalized that it would save Natives from harassment from whites and they could live in an area where they could govern themselves.Natives did not need to land so they could live anywhere. when an individual transfers property to another taxpayer during their life, without receiving or expecting to receive value in return, the property transferred is a(n) and is (taxable/nontaxable) to the person receiving the property. A student drew the following diagram to model the structure of an Australiangrassland community. Kangaroos are herbivores. In which level of thestudent's model would you find kangaroos?A. Level 3B. Level 4C. Level 1D. Level 2 Use the situation below to answer questions 1 - 3.A new Microsoft Surface computer costs $1275, but depreciates 16.5% each year as newtechnology comes out.1. Is this situation exponential growth or decay?2.Two students, Josh and Eve were debating how to represent a function to modelthe value, V, after x years. Both of their functions are below. Explain who youagree with and why.JoshV(x) = 1275 (0.835)*EveV(x) = 1275(1.165)*3. Write the correct function that models the context using both forms.V(x) = a(b)*V(x) = a(1+r)* if you try to manage a conflict with your partner using instant messaging and they write nasty comments about you and then signs off before you could reply. what conflict approach is your partner using? a) draw the runtime stack after each line executes under static scoping. what value assigned to z in line 12? b) draw the runtime stack after each line executes under dynamic scoping. what value assigned to z in line 12? nixon's policy of troop withdrawal from vietnam was designed to be: slow honorable quick and immediate in opposition to the peace talks a weight hanging from a spring will remain hanging until the weight is pulled down and released. when the weight is released the spring will bounce up and down. which of newton's laws explains why the spring will bounce? suppose you want to put the six bit value 111101into a des s-box.what is the corresponding row of the s-box substitution table? decision making reflects relatively permanent changes in an employee's knowledge and skills that result from experience. true or false applesauce can replace at least half the fat in many cookies and muffin recipes. group of answer choices true false if the controller uses regression analysis to estimate costs, the cost equation for electricity costs is: