we know that
An exterior angle of a triangle is equal to the sum of the two opposite interior angles.
so
Applying the Exterior Angle Theorem
m<1=67+47
m<1=114 degreesMario constructs a scale model of a building with a rectangular base. His model is 4.2 inches in length and 2 inches in width. The scale of the model is 1 inch = 15 feet What is the actual area, in square feet, of the base of the building?
First let's use two rules of three to determine the actual dimensions of the building.
For the length, we have:
[tex]\begin{gathered} 1\text{ inch}\to15\text{ feet} \\ 4.2\text{ inches}\to x\text{ feet} \\ \\ \frac{1}{4.2}=\frac{15}{x} \\ x=15\cdot4.2=63 \end{gathered}[/tex]For the width:
[tex]\begin{gathered} 1\text{ inch}\to15\text{ feet} \\ 2\text{ inches}\to x\text{ feet} \\ \\ \frac{1}{2}=\frac{15}{x} \\ x=15\cdot2=30 \end{gathered}[/tex]Now, calculating the area of the building base, we have:
[tex]\text{Area}=63\cdot30=1890\text{ ft2}[/tex]So the area of the building base is 1890 ft².
the sum of the angle measures of a polygon with n sides is given find n1440
Given in the question:
a.) The sum of all angles of a polygon is 1,440 degrees.
To be able to determine what polygon has a total sum of angles of 1,440 degrees, we will be using the following formula:
[tex]\text{ }\Theta=(n-2)x180^{\circ}[/tex]We get,
[tex]\text{ 1},440^{\circ}=(n-2)x180^{\circ}[/tex][tex]\text{ 1},440^{\circ}=180n-360^{\circ}[/tex][tex]180n=1,440^{\circ}\text{ + 360}^{\circ}[/tex][tex]180n=1,800^{\circ}[/tex][tex]\frac{180n}{180}=\frac{1,800^{\circ}}{180}[/tex][tex]n\text{ = 10}[/tex]Therefore, that polygon is a decagon or a polygon with 10 sides.
Square ABCD is inscribed in a circle with radius 20 m . What is the area of the part of the circle outside of the square
ANSWER:
456 square meters
STEP-BY-STEP EXPLANATION:
The first thing is to represent the problem in the following figure:
To calculate the area of the part of the circle outside of the square, we must calculate the area of the circle and subtract the area of the inscribed square.
To calculate the area of the square, we plant the following, taking into account that the diagonal of the square is equal to twice the radius and the sides equal to the radius times the root of two, like this:
Knowing the value of the side of the square, we can directly calculate the area of the part of the circle outside of the square, subtracting the corresponding areas like this:
[tex]\begin{gathered} A=A_C-A_S_{} \\ A=\pi\cdot r^2-\mleft(r\cdot\sqrt{2}\mright)^2 \\ \text{replacing} \\ A=3.14\cdot20^2-\mleft(20\cdot\sqrt{2}\mright)^2 \\ A=1256-800 \\ A=456 \end{gathered}[/tex]The area of the part of the circle outside of the square is equal to 456 square meters
You must show your work as you... determine whether QR and ST are parallel, perpendicular, or neither. Q(9, 10), R(-5, 2), S(-8, -2), T(-1, 2) Parallel Perpendicular Neither
WILL MARK BRAINLIEST
PLS HELP ASAP
Slope of QR = 4/7; Slope of ST = 4/7, therefore, the lines are parallel to each other.
How to Determine if Two Lines are Parallel or Perpendicular?To determine if two given lines are perpendicular to each other or parallel to each other, find their slopes.
Slope, m = change in y / change in x.
If they have the same slope, m, then they are parallel lines. If they have slopes that are negative reciprocal to each other, then they are perpendicular lines.
Given:
Q(9, 10)
R(-5, 2)
S(-8, -2)
T(-1, 2)
Find the slope of QR and ST:
Slope of QR = (10 - 2)/(9 -(-5)) = 8/14 = 4/7
Slope of ST = (-2 - 2)/(-8 -(-1)) = -4/-7 = 4/7
The slope are the same, therefore they are parallel to each other.
Learn more about parallel lines on:
https://brainly.com/question/10790818
#SPJ1
Find The distance DB from Cassini yo Tethys when AD is tangent to the circular orbit. Round to the nearest kilometer
we have that
triangle ABD is a right triangle , because AD is a tangent
so
Apply the Pythagorean Theorem
DB^2=AB^2+AD^2
we have
AB is a diameter (two times rhe radius)
AB=2*295,000=590,000 km
AD=203,000 km
substitute
DB^2=590,000^2+203,000^2
DB=623,946 kmSTRUCTURE Quadrilateral DEFG has vertices D(-1, 2), E(-2, 0), F(-1,-1) and G(1, 3). A translation maps quadrilateral DEFG to
quadrilateral D'EFG. The image of D is D'(-2,-2). What are the coordinates of E, F, and G'?
E (
FD
G' (
The coordinates are;
E' = (-3, -4)F' = (-2, -5)G' = (0, -1)Given,
Quadrilateral DEFG with vertices;
D = (-1, 2)E = (-2, 0)F = (-1,-1) G = (1, 3)We have to find the coordinates of E', F', G'.
A figure is translated when it is moved to the left, right, up, or down.
The original figure's points are all translated (moved) by the same amount and in the same direction.
Here,
Compare the coordinates of D with the coordinates of D' to determine the mapping rule that converts DEFG to D'E'F'G'.
D = (-1, 2)
D' = (-2, -2)
The x-coordinate has be translated 1 unit to the left.
The y-coordinate has been translated 4 units down.
Then,
The mapping rule is:
(x, y) → (x-1, y-4)
To find the coordinates of E', F' and G', apply the mapping rule to the given vertices of the pre-image:
⇒ E' = (-2-1, 0-4) = (-3, -4)
⇒ F' = (-1-1, -1-4) = (-2, -5)
⇒ G' = (1-1, 3-4) = (0, -1)
That is,
The coordinates are;
E' = (-3, -4)F' = (-2, -5)G' = (0, -1)Learn more about translation maps here;
https://brainly.com/question/13007985
#SPJ1
Which of the equations below could be the equation of this parabola? A. y = 1/2 x² B. x-1/2 y2 c. y = -1/2 x² D. x = 1/2 y2SUBMIT
The equation of the parabola is given as;
[tex]y=\frac{1}{2}x^2[/tex]The correct answer is option A.
Jordan owns a house painting service. For each house, they charge $95 plus $60 per hour of work. A linear equation that expresses the total amount of money Jordan earns per house is y=60x+95. What are the independent and dependent variables? What is the y-intercept and the slope?
Answer:
The slope is 60
The y intercept is 95
The independent variable is x (the number of hours)
The dependent variable is y (The amount earned.)
Step-by-step explanation:
First try was incorrect Fill in the blank. Constant: a number that is next to a variable.
A number that is right next to a variable. For instance,
[tex]5x+6[/tex]the number 6 is a constant.
the triangle in the figure had a hypotenuse equal to 40 units what is the approximate length of x
25.7 units
30.6 units
47.7 units
52.2 units
(Srry I’m spamming I know nothing on this test)
If the triangle in the figure has a hypotenuse equal to 40 units, then the approximate length of x is 30.64 units
The length of the hypotenuse = 40 units
The angle = 50 degrees
Here we have to apply the trigonometric function
we know
sin θ = Opposite side / Hypotenuse
cos θ = Adjacent side / Hypotenuse
tan θ = Opposite side / Adjacent side
Here we have to use the equation of sin θ
Substitute the values in the equation
sin 50 = x/40
x = 40×sin 50
x = 30.64 units
Hence, if the triangle in the figure has a hypotenuse equal to 40 units, then the approximate length of x is 30.64 units
Learn more about trigonometric function here
brainly.com/question/14746686
#SPJ1
absolute value of v-5>3
Answer: v=8
Step-by-step explanation:
-5+5=0
3+5=8
v=8
A company produces 11 times as many rings on shift 1+ shift to if I total of 12,000 rings were produced how many were produced on each shift
Shift 1 produced 11000 rings and Shift 2 produced 1000 rings.
What does "parent company" mean and how Do Parent Companies Work?
A single firm that owns a majority stake in another company or groups of companies is known as a parent company.
Parent corporations are created through acquisition, merger, spin-off, or carving out of subsidiaries.
A parent company is a business that controls a significant portion of another business, giving it operational authority over that business.
Given :-
Production of Shift 1 = 11 times of Production of Shift 2
total production = 12,000 rings
production of ( Shift 1 + Shift 2 ) = Total production
on solving we get,
Production of Shift 1 = 11,000 rings
Production of Shift 2 = 1,000 rings
To know more visit:-
https://brainly.com/question/20354514
#SPJ13
AcuveDetermining If a Number Is a SolutionQUICK CHECKWhich values are solutions to the inequality -3x – 4< 2? Check all of the boxes that apply.-4-2OOO03DONE
We have the next inequality given:
[tex]-3x-4<2[/tex]Solve the x variable:
Add both sides 4
[tex]\begin{gathered} -3x-4+4<2+4 \\ -3x<6 \end{gathered}[/tex]Divide both sides by 3
[tex]\begin{gathered} \frac{-3}{3}x<\frac{6}{3} \\ -x<2 \end{gathered}[/tex]Finally, multiply both sides by -1:
[tex]\begin{gathered} (-1)(-x)<2(-1) \\ x>-2 \end{gathered}[/tex]Hence, x can take any value greater than -2.
So, the solutions that apply are 0 and 3.
24. The base of a 13-foot ladder stands 5 feet from a house. Sketch a drawing to model this situation. How many feet up the side of the house does the ladder reach? Explain how drawing the picture helped you solve the problem.
The draw that describes this situation looks like this:
Drawing this helped us to know that the ladder forms a right triangle with one of the walls of the house.
When we have right triangles we can apply the Pythagoras theorem, from the Pythagoras theorem we can express:
[tex]13^2=5^2+h^2[/tex]Solving for h, we get:
[tex]\begin{gathered} 13^2-5^2=5^2-5^2+h^2 \\ 13^2-5^2=h^2 \\ h=\sqrt[]{13^2-5^2}=\sqrt[]{169-25}=\sqrt[]{144}=12 \end{gathered}[/tex]Then, the ladder reach 12 feet up the side of the house
| 5-6x | -12 = 0Solve the absolute. equation for 2 values of x
Given
[tex]|5-6x|-12=0[/tex]To solve this equation for both possible values of x, you have to separate it into two calculations.
1) One will be for the case that the values inside the absolute term are multiplied by "+1":
[tex]\begin{gathered} 1\cdot(5-6x)-12=0 \\ 5-6x-12=0 \\ -6x+5-12=0 \\ -6x-7=0 \\ -6x=7 \\ -\frac{6x}{-6}=\frac{7}{-6} \\ x=-\frac{7}{6} \end{gathered}[/tex]The first value of x is -7/6
2) The second will be the case that the absolute values are negative, that is as if they are multiplied by -1
[tex]\begin{gathered} (-1)(5-6x)-12=0 \\ -5+6x-12=0 \\ 6x-5-12=0 \\ 6x-17=0 \\ 6x=17 \\ \frac{6x}{6}=\frac{17}{6} \\ x=\frac{17}{6} \end{gathered}[/tex]The second value of x is 17/6
So for this absolute equation, the possible values of x are -7/6 and 17/6
-353-0-- * GR-35-21-2700-3s 6 - 2y-6- - +28+82-80 -592-35-07-2+27-35-30 9815+ Seesters << RB- --3-1-1-12) 6-5-3= LG - 5+13-2225 SVE -3-5y+6=-24 -*- 4y +50=-21 5r - 55 - 5 = 3r-S-=
Explanation:
5x - 4y + 2z = 21 ...equation 1
-x - 5y + 6z = -24 ....equation 2
-x - 4y + 5z = -21 ...equation 3
Using elimination method:
multiply equation 2 by 5:
-5x - 25y + 30z = -120 ....equation 2a
add equation 2a from 1:
5x - 5x -4y -25y + 2z + 30z = 21 - 120
0 - 29y + 32z = -99
-29y + 32z = - 99 ....equation 4
multiply equation 3 by 5:
-5x - 20y + 25z = -105 ...equation 3a
add equation 1 and 3a
5x - 5x - 4y - 20y + 2z +25z = 21 - 105
0 - 24y + 27z = -84
-24y + 27z = -84 ...equation 5
-29y + 32z = - 99 ....equation 4 (×-24)
-24y + 27z = -84 ...equation 5 (×-29)
696y - 768x = 2376 ...(4a)
696y -783x = 2436 ...(5a)
subtract 5a from 4a
696y - 696y -768x -(-783x) = 2376 - 2436
0 - 768x + 783x = -60
15x = -60
x = -60/15
x = -4
substitute for x in equation 4a:
696y - 768(-4) = 2376
696y + 3072 = 2376
696y = 2376 -3072
696y = -696
y = -696/696
y = -1
substitute for y in equation 4:
-29(-1) + 32z = -99
29 + 32z = -99
32z = -99 - 29
32z = -128
z = -128/32
z = -4
solve for missing variable: 11y-36=63
The equation can be solved as,
[tex]\begin{gathered} 11y-36=63 \\ 11y=63+36 \\ 11y=99 \\ y=\frac{99}{11} \\ y=9 \end{gathered}[/tex]Therefore, the value of y is 9.
What is the inverse function of y = (x-4)^2+2
One way to find the inverse of a function is by first swapping x and y, then solving for y, like this:
[tex]\begin{gathered} y=(x-4)^2+2\text{ }\Rightarrow x=(y-4)^2+2 \\ \end{gathered}[/tex]Now, let's solve for y, like this:
[tex]\begin{gathered} x=(y-4)^2+2 \\ x-2=(y-4)^2+2-2 \\ (y-4)^2=x-2 \\ \sqrt[]{\mleft(y-4\mright)^2}=\sqrt[]{x-2} \\ y-4=\sqrt[]{x-2} \\ y-4+4=\sqrt[]{x-2}+4 \\ y=\sqrt[]{x-2}+4 \end{gathered}[/tex]Then, the inverse function of y = (x-4)^2+2 is:
[tex]y=\sqrt[]{x-2}+4[/tex]Factor by grouping:y^3-5y^2+3y-15
we have the expression
y^3-5y^2+3y-15
Grouping terms
(y^3-5y^2)+(3y-15)
factor y^2
y^2(y-5)+(3y-15)
factor 3
y^2(y-5)+3(y-5)
factor (y-5)
(y-5)[y^2+3]which calculation does not show the surface area of the cube?
Given: A cube with side 6.5 cm
Required: Which calculation does not show the surface area of the cube.
Explanation:
Surface area of cube with side a is 6a².
So here the surface area of cube is
[tex]6(6.5)^2[/tex]Oprion 2, 3 and 4 reflects the calculation correctly.
But option A is actually the volume of the cube, it is not a correct way to show surface area of the cube.
Final Answer: option A is correct.
Lola needs 2/3 cup of lemon-lime soda for every 2 cups of punch. Find ____ cups of soda/cup of punch
We know that
• There are needed 2/3 cups of lemon soda for every 2 cups of punch.
To find the answer, we have to divide.
[tex]\frac{\frac{2}{3}}{2}=\frac{2}{6}=\frac{1}{3}[/tex]Therefore, the answer is 1/3 of soda/cup of punch.Jan 10, 7:17:08 PM Which equation represents a line which is perpendicular to the line x - 2y = -14? Oy= -27 -1 Oy= 2x + 8 Submit Answer Oy=x+4 Oy = -x + 2
You need to determine which line is perpendicular to the line
[tex]x-2y=-14[/tex]For two lines to be considered perpendicular their slopes must be the inverse positive, that is, if, for example, you have the lines
[tex]y_1=mx_1+b[/tex][tex]y_2=nx_2+c[/tex]For them to be perpendicular one slope must be the inverse negative of the other such as
[tex]n=-\frac{1}{m}[/tex]The first step is to write the given line in slope-intercept form:
1) Pass the x term to the right side of the equal sign
[tex]\begin{gathered} x-2y=-14 \\ x-x-2y=-14-x \\ -2y=-x-14 \end{gathered}[/tex]2) Divide both sides of the expression by "-2"
[tex]\begin{gathered} -\frac{2y}{-2}=-\frac{x}{-2}-\frac{14}{-2} \\ y=\frac{1}{2}x+7 \end{gathered}[/tex]The slope of the line is
[tex]m=\frac{1}{2}[/tex]So the slope of a line perpendicular to it will be the inverse negative of it
[tex]\begin{gathered} n=-(\frac{1}{\frac{1}{2}}) \\ n=-2 \\ \end{gathered}[/tex]The correct option is the one that has slope -2
can anyone help me? solve using system of linear equations using elimination x – y - 3z = 4 2x + 3y – 3z = -2 x + 3y – 2z = -4
The solution is x = 2, y = -2 and z =0
How to solve the system of equations?The system of equations is given as
x – y - 3z = 4
2x + 3y – 3z = -2
x + 3y – 2z = -4
Start by eliminating y
To do that, we subtract (2) from (3)
x + 3y – 2z = -4 - (2x + 3y – 3z = -2)
This gives
-x + z = -2
Make x the subject in the above equation
x = z + 2
Substitute x = z + 2 in (1) and (2)
z + 2 – y - 3z = 4
z + 2 + 3y – 2z = -4
Solve the equations
-2z - y = 2
-z + 3y = -6
Multiply -z + 3y = -6 by 2
-2z + 6y = -12
Start by eliminating z
Subtract -2z + 6y = -12 from -2z - y = 2
7y = -14
Evaluate
y = -2
Substitute y = -2 in -z + 3y = -6
-z + 3(-2) = -6
Evaluate
-z - 6 = -6
Evaluate
z = 0
Recall that x – y - 3z = 4
So, we have
x + 2 - 3(0) = 4
Evaluate
x = 2
Hence, the values of the variables are x = 2, y = -2 and z =0
Read more about system of equations at
https://brainly.com/question/13729904
#SPJ1
Write 6.5123 x 10^8 in standard
The standard form is a standard method of writing numbers such that we have it in the form:
[tex]a\times10^b[/tex]where
[tex]0Therefore, 6.5123 x 10^8 in standard form is:[tex]6.5123\times10^8[/tex]2/5m = 1/2 what is the m stand for ?
we can interpret m as a constant of proportionality.
prism x imprison wire similar. the volume of prison why is 92 cm3 find the volume of prism x.
If they are similar, then their side measures are proportional
Prism X, volume = 92 cm^3
To graph the inequality y>-3x-4, you would draw a dashed line.O A. TrueO B. False
True.
Since it is strictly greater
Two ships are sailing across the Atlantic ocean at the equator. The dofference in solar time between them is two hours. How many degrees of longitude are they apart?
Answer:
30 degrees
Step-by-step explanation:
There are 360 degrees of longitude ( 360 degrees is a complete circle)
It takes 24 hours to complete a complete rotation of the earth
360 degrees / 24 hours = 15 degrees / hr
15 degrees/ hr * 2 hr = 30 degrees
I will send u a picture of my equation
Answer:
where is the picture????
In a survey, 12 people were asked how much they spent on their child's last birthday gift. The results wereroughly bell-shaped with a mean of $39.1 and standard deviation of $17.4. Estimate how much a typical parentwould spend on their child's birthday gift (use a 99% confidence level). Give your answers to 3 decimal places.Express your answer in the format of ī + Error.$£ $
Given:
number of people (n) = 12
mean = 39.1
standard deviation = 17.4
99% confidence level
Using the confidence level formula, we can find the estimate of how much a typical parent would spend on their child's birthday:
[tex]\begin{gathered} CI\text{ = x }\pm\text{ }\frac{z\varphi}{\sqrt[]{n}} \\ \text{where x is the mean} \\ z\text{ is the z-score at 99\% confidence interval} \\ \varphi\text{ is the standard deviation} \\ n\text{ is the number of people asked} \end{gathered}[/tex]The z-score at 99% confidence level is 2.576
Substituting, we have:
[tex]\begin{gathered} CI\text{ = 39.1 }\pm\text{ }\frac{2.576\text{ }\times\text{ 17.4}}{\sqrt[]{12}} \\ =26.161\text{ and 52}.039 \end{gathered}[/tex]Hence, a typical parent would spend between $26.161 and $52.039 or :
[tex]39.1\text{ }\pm\text{ 12.939}[/tex]