Answer:
Step-by-step explanation:
21
As I am completely brand new to this subject/branch of mathematics, please explain thoroughly, step by step on how to complete this This is a practice from my ACT prep guide take your time, as there is no rush *Ignore the last answer option
Remember that
The difference of squares is of the form
[tex](a+b)(a-b)=a^2-b^2[/tex]In this problem we have
[tex](3x-4y^2)(3x+4y^2)[/tex]so
a=3x
b=4y^2
therefore
Apply the difference of squares
[tex](3x-4y^2)(3x+4y^2)=(3x)^2-(4y^2)^2=9x^2-16y^4[/tex]Solve Each System by Elimination:-12x-2y=30-4x+y=-5
We solve as follows:
-12x - 2y = 30
2(-4x + y = -5)
---------------------
-12x -2y = 30
-8x + 2y = -10
--------------------
-20x = 20 => x = -1
Now we replace the value of x in one of the original equations to solve for y, that is:
-4(-1) + y = -5 => 4 + y = -5 => y = -9
So, the solution is the point (-1, -9).
Which of the following tests should be administered to see if an experimental medicine lowers blood pressure among hypertensive patients? A. two-tailed test OB. right-tailed test OC. alternative test OD. left-tailed test
We have to select the appropiate test to see if an experimental medicine lowers blood pressure among hypertensive patients.
In this case, we want to test if the mean for the blood pressure after the treatment is significantly lower than the blood pressure mean without treatment.
Then, for the blood pressure to be significantly different it has to be to the left of a critical value.
Then, it is a left-tailed test.
Answer:
I need help solving an optimization math problem please :)
Answer:
Explanation:
Let the side opposite the river = x
Let the adjacent side to the river = y
In the diagram below, DE is parallel to yy. What is the value of x? 110° A. 90 0 B. 120 O C. 110 O D. 70
Angle shown x is corresponding angle to 110 degree angle shown (from property of transversal cutting a pair of parallel lines).
hence
x = 110
Mr Gregory drives a furniture delivery truck 4 days each week the table below shows the driving record for 1 week find the difference in meters between the distance Mr Gregory traveled on Wednesday and Thursday
ANSWER:
6150 meters
STEP-BY-STEP EXPLANATION:
To calculate the difference between the two days we must calculate the subtraction of the values corresponding to the days Wednesday and Thursday.
[tex]80.75\text{ km}-74.6\text{ km}=6.15\text{ km}[/tex]Now, we convert this value in kilometers to meters, knowing that 1 kilometer is equal to 1000 meters:
[tex]6.15\text{ km}\cdot\frac{1000\text{ m}}{1\text{ km}}=6150\text{ m}[/tex]Number of adult tickets sold = Number of child tickets sold =
Given:
Total ticket = 321
Total collection = $3535
Adult ticket price = $15
Child ticket price = $5
Find-:
(1)
Number of adult tickets sold
(2)
Number of child tickets sold
Explanation-:
Let the number of adult tickets = x
Let the number of child tickets = y
If the total ticket is 321 then,
[tex]x+y=321........................(1)[/tex]Price for adult ticket is:
[tex]=15x[/tex]The price for child ticket is:
[tex]=5y[/tex]total price is $3535 then,
[tex]15x+5y=3535...................(2)[/tex]From eq(1)
[tex]\begin{gathered} x+y=321 \\ \\ 5x+5y=1605..............(3) \end{gathered}[/tex]So eq(2) - eq(3) is:
[tex]\begin{gathered} (15x+5y)-(5x+5y)=3535-1605 \\ \\ 15x-5x+5y-5y=1930 \\ \\ 15x-5x=1930 \\ \\ 10x=1930 \\ \\ x=\frac{1930}{10} \\ \\ x=193 \end{gathered}[/tex]Put the value in eq(1) then,
[tex]\begin{gathered} x+y=321 \\ \\ 193+y=321 \\ \\ y=321-193 \\ \\ y=128 \end{gathered}[/tex]So,
Number of adult tickets = 193
Number of child tickets = 128
O GRAPHS AND FUNCTIONSGraphing a piecewise-defined function: Problem type 1
Answer:
Explanation:
To get the plot of h(x), we just plot the given values of y at the given values of x.
For example, we are told that between x = -3.5 and -2.5, h(x) = -3. Therefore, the plot gives
The hollow circle tells us that the value x = -3.5 itself is not included. The solid circle tells us that x = -.2.5 is included. All this comes from the fact that the interval given is -3.5 < x ≤ -2.5.
Using the same method for other entries on the graph, we get our desired plot.
Triangle ABC is inscribed in the circle with arcs shown. find X and the measures of angle A, angle B, Angle C
The total circumference of a circle = 360°
Therefore,
[tex]\text{arc AB + arc BC+ arc AC}=360^0[/tex]Where,
[tex]\begin{gathered} \text{arc AB=(6x+10)}^0 \\ \text{arc BC=(x+15)}^0 \\ \text{arc AC=((8x-40)}^0 \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} (6x+10)^0+(x+15)^0+(8x-40)^0=360^0 \\ 6x^0+x^0+8x^0+10^0+15^0-40^0=360^0 \\ 15x^0-15^0=360^0 \\ 15x^0=360^0+15^0 \\ 15x^0=375^0 \\ \text{divide both sides by }15 \\ \frac{15x}{15}=\frac{375^0}{15} \\ x=25^0 \end{gathered}[/tex][tex]\begin{gathered} \text{arc AB=(6x+10)}^0=(6\times25+10)^0=150^0+10^0=160^0 \\ \text{arc BC=(x+15)}^0=(25^0+15^0)=40^0 \\ \text{arc AC=(8x-40)}^0=(8\times25^0-40^0)=200^0-40^0=160^0 \end{gathered}[/tex]To calculate
[tex]\begin{gathered} \angle A,B,\angle C \\ We\text{ will use the theorem,} \\ \text{The measure of an insribed angle in a circle equals half the measure of the intercepting arc} \\ \end{gathered}[/tex][tex]\begin{gathered} \angle A=\frac{arc\text{ BC}}{2} \\ \angle A=\frac{40^0}{2}=20^0 \end{gathered}[/tex][tex]\begin{gathered} \angle B=\frac{arc\text{ AC}}{2} \\ \angle B=\frac{160^0}{2}=80^0 \end{gathered}[/tex][tex]\begin{gathered} \angle C=\frac{arc\text{ AB}}{2} \\ \angle C=\frac{160^0}{2}=80^0 \end{gathered}[/tex]Hence,
x = 25°
∠ A=20°
∠ B=80°
∠ C=80°
9×2=2×9 what is the property of this problem?
The property involved is called "commutative property of product"
SInce we are flipping the oerder of the factors and arrive at the same result.
The "flipping is called "commuting" in Math terms.
please helpppppp i dont get it
The subtraction of the mixed fractions and presenting the result in simplest form gives;
[tex] \displaystyle{9 \frac{2}{5} - 4 \frac{4}{5} = 14 \frac{1}{5}} [/tex]
What is are mixed fractions?A mixed fraction is one that has both a quotient part as a whole number, the remainder, as the numerator of the fraction part, and the divisor as the denominator of the fraction part.
The equation involves the subtraction of mixed fractions, which are expressed as follows;
[tex] \displaystyle{9 \frac{2}{5} - 4 \frac{4}{5} } = [/tex]
To subtract the mixed fractions, the mixed fraction can first be rearranged into improper fractions as follows;
[tex] \displaystyle{ \frac{5 \times 9 + 2}{5} - \frac{5 \times 4 + 4}{5} = \frac{47}{5} + \frac{24}{5} }[/tex]
[tex] \displaystyle{ \frac{47}{5} + \frac{24}{5} = \frac{71}{5} }[/tex]
The result of the addition of the improper fraction which is also an improper fraction can be rearranged into partial fractions again as follows;
71 = 5 × 14 + 1
Which gives;
[tex] \displaystyle{ \frac{71}{5} = 14 \frac{1}{5} }[/tex]
Therefore;
[tex] \displaystyle{9 \frac{2}{5} - 4 \frac{4}{5} = 14 \frac{1}{5}} [/tex]
Learn more about mixed and improper fractions here:
https://brainly.com/question/1055953
#SPJ1
5. a) Look at the number grid below. Shade the Multiples of 4, 1 2 3 4 5 6 7 00 8 9 10 11 12 13 14 15 16 17 17 18 19 20
We need to find the multiples of 4 using the next given set:
The multiples of 4 are given by
4*1 =4
4*2 = 8
4*3= 12
4*4=16
4 *5 =20
Then:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20.
Picture explains it all
Karen wants to buy a new car but needs money for the down payment. Her parents agree to lend her money at an annual rate of 4%, charged as simpleInterest. They lend her $8000 for 6 years. She makes no payments except the one at the end of that time.Answer the following questions. If necessary, refer to the list of financial formulas.х5?(a) How much total interest will Karen have to pay?s0(b) What will the total repayment amount be (including Interest)?s[]
Answer:
a) $1,920
b) $9,920
Explanation:
Step 1. Gather all of the information.
The amount borrowed will be the principal or starting amount P:
[tex]P=8,000[/tex]The interest rate will be r:
[tex]r=4\text{ percent}[/tex]We will need the interest rate in decimal form, for that, divide the percentage amount by 100:
[tex]\begin{gathered} r=\frac{4}{100} \\ \downarrow \\ r=0.04 \end{gathered}[/tex]And the time of the loan is 6 years, this will be the value of t:
[tex]t=6[/tex]Step 2. To solve part a, we use the following formula to calculate the interest:
[tex]I=p\times r\times t[/tex]Substituting all of the known values:
[tex]I=8,000\times0.04\times6[/tex]The result is:
[tex]I=1,920[/tex]The total interest that Karen will have to pay is $1,920.
Step 3. To solve part b, we need to find the total repayment amount.
To find this, we add the interest and the principal amount:
[tex]T=P+I[/tex]Where T represents the total amount.
Substituting P and I:
[tex]\begin{gathered} T=8,000+1,920 \\ \downarrow \\ T=9,920 \end{gathered}[/tex]The total amount she will have to repay is $9,920.
Answer:
a) $1,920
b) $9,920
(-1,2) and (3,32)
For each of the following, find the formula for an exponential function that passes through the two points given.
The required exponential function f(x) = (4)(2)ˣ which is passes through the two points (-1,2) and (3,32).
What is an exponential function?An exponential function is defined as a function whose value is a constant raised to the power of an argument is called an exponential function.
It is a relation of the form y = aˣ in mathematics, where x is the independent variable
Let the formula for an exponential function would be as
⇒ f(x) = abˣ
The exponential function passes through the two points (-1,2) and (3,32).
f(-1) = 2
f(3) = 32
2 = ab⁻¹
2b = a
32 = ab³
Substitute the value of a = 2b in the above equation,
32 = 2b×b³
32 = 2b⁴
b⁴ = 16
b⁴ = 2⁴
b = 2
Substitute the value of b = 2 in the equation a = 2b,
So a = 2×2 = 4
⇒ f(x) = (4)(2)ˣ
Therefore, the required exponential function f(x) = (4)(2)ˣ
Learn more about exponential function here:
brainly.com/question/11487261
#SPJ1
Use four rectangles to estimate the area between the graph of the function f(x) = Ty and the taxis on the interval 12, 6) using the left endpointsof the subintervals as the sample points. Write the exact answer, Do not round,
To find the area using four rectangles, we will use the following equation:
[tex]Area\approx A_1_{}+A_2+A_3+A_4[/tex][tex]Area\approx f(x_1)\Delta x+f(x_2)\Delta x+f(x_3)\Delta x+f(x_4)\Delta x[/tex][tex]Area\approx f(3)\Delta x+f(4)\Delta x+f(5)\Delta x+f(6)\Delta x[/tex][tex]Area\approx(\frac{6}{7(3)})(1)+(\frac{6}{7(4)})(1)+(\frac{6}{7(5)})(1)+(\frac{6}{7(6)})(1)[/tex][tex]Area\approx\frac{57}{70}[/tex]estimate 794 divided by 18=?
Answer:
C 40
Step-by-step explanation:
794 is about 800
18 is about 20
800/20=40
Evaluate the logarithmLog 6 1/36
Answer:
-2
Explanation:
By properties of logarithms, the logarithm of a fraction is equal to the difference of logarithms, so
[tex]\log _6(\frac{1}{36})=\log _61-\log _636[/tex]Now, log₆(1) = 0 and log₆36 = 2, so
[tex]\begin{gathered} \log _6(\frac{1}{36})=0-2 \\ \log _6(\frac{1}{36})=-2 \end{gathered}[/tex]Therefore, the answer is -2
Which of the following is equal to - 7/4w expressed as a linear combination of vectors, if W= -1/2i- 3/2j?
Therefore, the scalar multiplication of vector -7/4 w is given by
[tex]-\frac{7}{4}w=-\frac{7}{4}(-\frac{1}{2}i-\frac{3}{2}j)[/tex][tex]=\frac{7}{8}i+\frac{21}{8}j[/tex]Hence, the linear combination is 7/8 i + 21/8 j
En un depósito había 127 bolsas de harina  cada una de 60 kg se sacaron ocho camiones de 12 bolsas cada uno cuantos kilogramos de harina quedaron en el depósito 
Based on the number of bags of flour that were taken by the trucks and the number that were in the warehouse, the amount of kilograms left in the warehouse is 1,860 kg
How to find the number of kilograms?First, find the number of bags that were taken by the trucks by the formula:
= Number of trucks x Number of bags per truck
= 8 x 12
= 96 bags
This means that the number of bags left are:
= 127 bags - 96 bags taken
= 31 bags left
The number of kilograms of flour left is:
= Number of bags left x Number of kilograms per bag
= 31 x 60
= 1,860 kg
Find out more on kilograms at https://brainly.com/question/11083065
#SPJ1
will send image. select the expression. that is not equivalent to 10 + 10p
We have that
[tex]\begin{gathered} 5(10\text{ + p +p) = 5(10 + 2p)} \\ =\text{ 50 + 10p }\ne\text{ 10 + 10 p} \end{gathered}[/tex]So the answer is the first one.
Which statement is equivalent to ~p? p: Even numbers are divisible by 2.
The statement ~p is "Even numbers are not divisible by 2."
Given statement:-
p: Even numbers are divisible by 2.
We have to find ~p for the statement p.
We know that ~p means negation of p.
Hence, we will negate the statement by adding "not" in the statement.
Hence, the statement will become,
Even numbers are not divisible by 2.
Negation of a statement
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written ~P or -P.
It is interpreted intuitively as being true when P is false, and false when P is true.
To learn more about negation, here:-
https://brainly.com/question/22787240
#SPJ1
Solve the problem15) 21 and 22 are supplementary angles. What are the measures to the nearest hundredth) of the two angles?5x - 92I
∠1 is 31.5°
∠2 is 148.5°.
Given:
∠1 = x
∠2 = 5x-9
The measure of ∠1 and ∠2 are supplementary angles.
First, the value of x can be calculated as,
[tex]\begin{gathered} \angle1+\angle2=180\degree \\ 5x-9+x=180\degree \\ 6x-9=180\degree \\ 6x=180+9 \\ 6x=189 \\ x=\frac{189}{6} \\ x=31.5 \\ x=\angle1 \end{gathered}[/tex]Substitute the value of x in ∠2.
[tex]\begin{gathered} \angle2=5x-9 \\ =5(31.5)-9 \\ =157.5-9 \\ =148.5 \end{gathered}[/tex]Hence, the measure of ∠1 is 31.5° and the measure of ∠2 is 148.5°.
A flower bed is in the shape of a rectangle. It measures7 yd long and 4 yd wide. Chris wants to use mulch tocover the flower bed. The mulch is sold by the squarefoot. Use the facts to find the area of the flower bed insquare feet.2ftX 5?Conversion facts for length1 foot (ft)1 yard (yd)1 yard (yd)===12 inches (in)3 feet (ft)36 inches (in) i need help with this math problem.
Answer
252 ft²
Step-by-step explanation
1 yard is equivalent to 3 feet. Using this conversion factor, the equivalence of 7 yd is:
[tex]\begin{gathered} 7\text{ yd =}7\text{ yd}\cdot\frac{3\text{ ft}}{1\text{ yd}} \\ \text{ Simplifying the units:} \\ 7\text{ yd =}\frac{7\cdot3}{1}\text{ ft} \\ 7\text{ yd }=21\text{ ft} \end{gathered}[/tex]Similarly, the equivalence of 4 yards is:
[tex]\begin{gathered} 4\text{ yd }=4\text{ yd}{}\cdot\frac{3\text{ ft}}{1\text{ yd}} \\ 4\text{ yd }=4\cdot3\text{ ft} \\ 4\text{ yd}=12\text{ ft} \end{gathered}[/tex]Therefore, the length of the bed is 21 ft and the width is 12 ft.
Finally, the area of the bed (a rectangle) is calculated as follows:
[tex]\begin{gathered} A=legnth\cdot width \\ A=21\cdot12 \\ A=252\text{ ft}^2 \end{gathered}[/tex]Harper just lit a new candle and then let it burn all the way down to nothing. The length of the candle remaining unburned, in inches, can be modeled by the equation L=15-1.5t,L=15−1.5t, where tt represents the number of hours since the candle was lit. What is the slope of the equation and what is its interpretation in the context of the problem?
From the information given, the slope (m) of the equation is -1.5. This means that there is an inverse relationship between the Lenght of the Candle and the number of hours. Where, the longer the number of hours, the smaller the length of the candle. See further explanation below.
What is a slope?The slope of a line is its steepness as it goes from LEFT to RIGHT. The slope is the proportion of a line's rise, or vertical change, to its run, or horizontal change. The slope of a line is always fixed (it never changes) regardless of whatever two locations on the line are chosen.
When dealing with a linear relationship, the question is usually represented in this format:
y = mx + b; where
m = slope and
b= y-intercept (or constant)
From the case above, the equation shows the relationship between time (t) the candle spends burning and the length of the candle (l).
Logically, we can infer that there will be a negative relationship between the two but first lets us determine the slope.
Restating the equation in intercept format, we have:
L = 15 - 1.5t................................1; in intercept format the slope we have
L = -1.5t + 15 ...........................2.
Where L [tex]\sim[/tex] y; m [tex]\sim[/tex] -1.5 and t [tex]\sim[/tex] x; and b [tex]\sim[/tex] 15
Hence we can state that the m (slope) = -1.5 and that if plotted on a graph, the line crosses the y-axis at y = 15 where x = 0.
Also, if L (that is y) is set to zero, then the total time taken for ALL the candles to burn is 10 hours.
See attached graph as proof.
The logical interpretation above is hence confirmed that there is an inverse relationship between x and y. This means that the longer the time, the shorter the length of the candle.
This also means that the length of the candle cannot be or is not longer than 15.
Learn more about slopes:
https://brainly.com/question/3493733
#SPJ1
The slope of the equation is -3/2 describing the rate at which the length of the candle is decreasing.
What are lines and their slopes?We know lines have various types of equations, the general type is
Ax + By + c = 0.
We know slope is the rate of change of the y-axis with respect to the x-axis
also, rise over run which is (y₂ - y₁)/(x₂ - x₁).
The burning equation of the candle is represented by L = 15 - 1.5t.
Where L = length of the candle and any point of time and t = time in hours.
Now, we'll need two points from this equation to obtain the slope.
At, t = 2, L = 12. and at t = 4, L = 9.
So, the two points are (2, 12) and (4, 9).
∴ Slope(m) = (9 - 12)/(4 - 2).
Slope(m) = -3/2.
The slope of this equation describes the rate at which the height of the candle is changing.
learn more about slopes here :
https://brainly.com/question/16941905
#SPJ1
Write an inequality for the graph shown below. Use x for your variable. + -11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 X
according to the graph, inequality is:
[tex]x\ge3[/tex]Which describes the product when two fractions greater than 0 and less than 1 are multiplied?
When you multiply two numbers, one of them greater than 0 and the other one lower than 1. The result is a number that is lower than the first one, that is, a number lower than the number greate than 0.
the figure shows a net for a three-dimensional figure. the net includes three squares.a) what is the three dimension figure. b) what is the surface area of the digure.
(b).
The area of the figure is equal to the sum of the area of the three squares and 2 triangles.
The area of the square is
[tex]2\operatorname{cm}\times2\operatorname{cm}=4\operatorname{cm}^2[/tex]The area of the triangle is
[tex]\frac{1}{2}\times1.7\operatorname{cm}\times2\operatorname{cm}=1.7\operatorname{cm}^2[/tex]Hence, two triangles and three squares have a total area of
[tex](4\operatorname{cm}\times3)+(2\times1.7cm)=15.4\operatorname{cm}^2[/tex]For Hox)=2x– 9 and 96 = ; « +9), find (10 g)(x) and (gof)(x). Then determine whether (f = 9/8)= (4 * H(X).What is (fog)x)?(10 g)x)=0
Given the functions;
[tex]\begin{gathered} f(x)=2x-9 \\ g(x)=\frac{1}{2}(x+9) \end{gathered}[/tex]We want to find the composite functions;
[tex]undefined[/tex]Find the midpoint of the segment below and enter its coordinates as anordered pair. If necessary, express coordinates as fractions, using the slashmark ( 1 ) for the fraction bar.
Consider that the coordinates of the mid-point of a line segment is given by the formula,
[tex]\begin{gathered} x=\frac{x_1+x_2}{2} \\ y=\frac{y_1+y_2}{2} \end{gathered}[/tex]The given diagram represents the line segment between the points (-3,4) and (-6,-1).
So the corresponding mid-point is given by,
[tex]\begin{gathered} x=\frac{-3+(-6)}{2}=\frac{-9}{2} \\ y=\frac{4+(-1)}{2}=\frac{3}{2} \end{gathered}[/tex]Thus, the mid-point of the given line segment is ( -9/2 , 3/2 ) .