Mercury has a mass of 3.29E23 kg and a radius of 2.44E6 m. Venus has a mass of 4.87E24 kg and a radius of 6.05E6 m. The gravitational field near the surface of Mercury is? N/kg. The gravitational field near the surface of Venus is? N/kg.

Answers

Answer 1

Gravitational field near the surface of Mercury is approximately 3.7 N/kg

Gravitational field near the surface of Venus is approximately 8.87 N/kg.

Gravitational field near the surface of Mercury and Venus, we can use the formula:

gravitational field (g) = (G * M) / R^2

where G is the gravitational constant (6.67430 × 10^(-11) m^3 kg^(-1) s^(-2)), M is the mass of the planet, and R is the radius of the planet.

For Mercury:
M = 3.29E23 kg
R = 2.44E6 m

g = (6.67430 × 10^(-11) m^3 kg^(-1) s^(-2) * 3.29E23 kg) / (2.44E6 m)^2
g ≈ 3.7 N/kg

For Venus:
M = 4.87E24 kg
R = 6.05E6 m

g = (6.67430 × 10^(-11) m^3 kg^(-1) s^(-2) * 4.87E24 kg) / (6.05E6 m)^2
g ≈ 8.87 N/kg

So, the gravitational field near the surface of Mercury is approximately 3.7 N/kg, and the gravitational field near the surface of Venus is approximately 8.87 N/kg.

learn more about 'gravitation':https://brainly.com/question/31276986

#SPJ11


Related Questions

an object is located in water 30 cm from the vertex of a convex surface made of plexiglas with a radius of curvature of 80 cm. where does the image form by refraction and what is its magnification? nwater

Answers

The image formed by refraction is at a distance of 120cm behind the lens and its magnification is 4.

The image formation by refraction and magnification of an object in water 30 cm from the vertex of a convex surface made of plexiglass with a radius of curvature of 80 cm can be calculated using the following steps:

1. Determine the object's distance from the lens. Object distance (u) = -30 cm. (negative sign as per the convention of the mirror)

2. Determine the focal length of the lens using the formula:

f = R/2 where, f = focal length of the lens, R = radius of curvature of the lens.

So, f = 80/2 = 40 cm.

3. Use the mirror formula to determine the image distance from the surface:

1/f = 1/v + 1/u where,v = image distance from the surface.

Substituting the given values (with proper sign convention), we get:

(-1/40) = 1/v + (-1/30)

Solving for v, we get:

v = 120 cm.

5. Use the magnification formula to determine the magnification of the image:

m = -(v/u)

where,m = magnification, v = 120 cm, u = 30 cm

Therefore,m = -(120/-30) = 4

Therefore, the image will form at a distance of 120 cm from the lens on the water side of the lens and is magnified by a factor of 4.

To know more about refraction, refer here:

https://brainly.com/question/26528081#

#SPJ11

an unbelted victim in a car accident will continue to move in the same direction and with the same speed until the dashboard causes a change in motion. this best exemplifies

Answers

According to Newton's first law, an unbelted victim in a car accident will continue to move in the same direction and with the same speed until the dashboard causes a change in motion.

Inertia is the tendency of an object to remain in motion in the absence of an unbalanced force. It is the property of an object to resist any change in motion unless acted upon by an external force.

The dashboard applies an external force that changes the direction and speed of the victim. This is because the person has no external forces acting on them to cause them to stop. Since they were in motion at the time of the accident, they will continue in that motion unless acted upon by another force, such as the dashboard, until they come to a stop or another force acts upon them.

Therefore, the best exemplifies the law of inertia. The law of inertia states that an object at rest will remain at rest, and an object in motion will remain in motion at a constant velocity unless acted upon by an external unbalanced force.

Learn more about the speed at

brainly.com/question/24091038

#SPJ11

a 67.97 kg student is standing atop a spring in an elevator that is accelerating upward at 3.66 m/s2. the spring constant is 2658 n/m. by how much is the spring compressed?

Answers

The spring is compressed by 0.70 m.

The 67.97 kg student standing atop a spring in an elevator that is accelerating upward at 3.66 m/s2 has a spring constant of 2658 n/m. The amount the spring is compressed can be calculated using the formula:

F = kx,

where F is the force, k is the spring constant, and x is the amount of compression.

Therefore, we can calculate the amount of compression in the spring as follows:

x = F/k = (67.97 kg * 3.66 m/s2)/2658 N/m = 0.70 m

Therefore, the spring is compressed by 0.70 m.

To know more about Spring compression, refer here:

https://brainly.com/question/12278394#

#SPJ11

To determine the location of her center of mass, a physics student lies on a lightweight plank supported by two scales 2.50m apart, as indicated in the figure . If the left scale reads 290 N, and the right scale reads 112 N. What is the student's mass and find the distance from the student's head to her center of mass.

Answers

The location of her centre of mass, a physics student lies on a lightweight plank supported by two scales 2.50m apart, as indicated in the figure. If the left scale reads 290 N and the right scale reads 112 N The student's mass is approximately 41 kg, and the distance from her head to her centre of mass is approximately 0.696 m.

To determine the student's mass, we can sum up the readings from both scales, which are measures of force (Newtons) and then convert it to mass using the gravitational acceleration (g = 9.81 m/s²).
Step 1: Calculate the total force acting on the plank:
Total Force = Force_left_scale + Force_right_scale
Total Force = 290 N + 112 N
Total Force = 402 N
Step 2: Convert the total force to mass using gravitational acceleration:
Mass = Total Force / g
Mass = 402 N / 9.81 m/s²
Mass ≈ 41 kg
Now, to find the distance from the student's head to her centre of mass, we'll use the principle of torque equilibrium.
Step 3: Set up the torque equation:
Torque_left_scale = Torque_right_scale
Force_left_scale × Distance_left_scale = Force_right_scale × Distance_right_scale
Let x be the distance from the student's head to her centre of mass. Then, the distance from the left scale to the centre of mass is x, and the distance from the right scale to the centre of mass is (2.50 - x).
Step 4: Plug in the known values and solve for x:
290 N × x = 112 N × (2.50 - x)
Step 5: Simplify the equation and solve for x:
290x = 112(2.50) - 112x
290x + 112x = 112(2.50)
402x = 280
x ≈ 0.696 m
The student's mass is approximately 41 kg, and the distance from her head to her centre of mass is approximately 0.696 m.

For more such questions on  centre of mass

brainly.com/question/28021242

#SPJ11

when einstein's theory of gravity (general relativity) gained acceptance, it demonstrated that newton's theory had been?a. wrongb. incompletec. really only guess

Answers

When Einstein's theory of gravity (general relativity) gained acceptance, it demonstrated that Newton's theory had been (b) incomplete.

Newton's theory of gravity is a law that governs the behavior of objects. The formula [tex]F = \frac {G m_1  m_2}{ d^2}[/tex] explains the force of gravity between two objects, where F is the force of gravity, G is the universal gravitational constant, m1 is the mass of one object, m2 is the mass of another object, and d is the distance between the centers of the two objects. This formula shows that gravity decreases as distance increases.

Einstein's theory of gravity (general relativity): It is a theoretical framework proposed by Albert Einstein in 1915. It combines special relativity and Newton's law of universal gravitation. General relativity is based on the notion that gravitation is not a force acting between two masses but rather a curvature of spacetime created by the presence of massive objects. It differs from Newton's law of universal gravitation, which states that gravitation is caused by an attractive force acting between two masses.

When Einstein's theory of gravity (general relativity) gained acceptance, it demonstrated that Newton's theory had been incomplete. Therefore the correct answer is b.

Learn more about Albert Einstein:

https://brainly.com/question/1275198

#SPJ11

a 5 kg toy train car is connected to a 3 kg toy train car. the 3 kg car is given an external force of 16 n. what is the tension in the rope connecting the cars?

Answers

A 5 kg toy train car is connected to a 3 kg toy train car. the 3 kg car is given an external force of 16 n. the tension in the rope connecting the two cars is 29 N.

The tension in the rope connecting two toy train cars A toy train car with a mass of 5 kg is connected to a toy train car with a mass of 3 kg. An external force of 16 N is applied to the 3 kg car.

Tension in the rope between the two toy cars is what we need to calculate. According to Newton’s 2nd law, force equals mass multiplied by acceleration. If the two cars are moving in the same direction with the same acceleration, the tension in the rope can be calculated as follows:

Force acting on the two cars is the external force that is applied on the 3 kg car which is equal to 16 N. In this case, both cars will have the same acceleration.

for such more question on tension

https://brainly.com/question/24994188

#SPJ11

the centripetal force in a collapsing cloud of gas and dust is strongest at the poles question 9 options: true false

Answers

The given statement "centripetal force in a collapsing cloud of gas and dust is strongest at the poles" is - True.

Centripetal force refers to a force that drives an object toward a fixed point, which is the center of a circular path. For example, if you tie a ball to a string and whirl it around in a circle, the string exerts a centripetal force on the ball that keeps it moving in a circle.

The force of gravity is the most common centripetal force that we encounter in nature, and it is what drives the movement of planets, moons, and other celestial objects.

During the formation of a star, a cloud of gas and dust collapses inwards due to gravity. The cloud starts to rotate as it shrinks due to the law of conservation of momentum. The centripetal force in this situation is the gravitational force that holds the cloud together.

The gravitational force, on the other hand, is stronger at the poles of the cloud. The gravitational force increases as the distance between the particles in the cloud decreases. Because the poles of the cloud are closer together, the gravitational force is stronger, and the centripetal force is also stronger.

As a result, the centripetal force in a collapsing cloud of gas and dust is strongest at the poles.

To know more about centripetal force click here:

https://brainly.com/question/14249440

#SPJ11

a body weighs 0.5kg in air 0.3kg in water and 0.2kg in a liquid. what is the relative density of the liquid​

Answers

Answer:

The relative density of the liquid is 1.5

Explanation:

The relative density of a liquid is defined as the ratio of the density of the liquid to the density of water. We can use the principle of buoyancy to find the relative density of the liquid.

When the body is immersed in water, it experiences an upthrust equal to the weight of water displaced. Therefore, the weight of water displaced = weight of the body in air - weight of the body in water = 0.5 kg - 0.3 kg = 0.2 kg.

Similarly, when the body is immersed in the liquid, it experiences an upthrust equal to the weight of liquid displaced. Therefore, the weight of liquid displaced = weight of the body in air - weight of the body in the liquid = 0.5 kg - 0.2 kg = 0.3 kg.

The relative density of the liquid can be found as follows,

Relative density of liquid = Density of liquid / Density of water

= (Weight of liquid displaced / Volume of liquid) / (Weight of water displaced / Volume of water)

= (0.3 kg / Volume of liquid) / (0.2 kg / Volume of water)

= (0.3 kg / Volume of liquid) / (0.2 kg / 0.2 L) [since the density of water is 1 g/mL or 1 kg/L]

= 1.5 / Volume of liquid

Therefore, the relative density of the liquid is 1.5 divided by the volume of the liquid in liters.

engineers at the university of texas at austin are developing an advanced locomotive propulsion system that uses a gas turbine and perhaps the largest highspeed flywheel in the world in terms of the energy it can store. the flywheel can store 4.8 * 108 j of energy when operating at its maximum rotational speed of 15,000 rpm. at that rate, the perimeter of the rotor moves at approximately 1,000 m/s. determine the radius of the flywheel and its rotational inertia.

Answers

The radius of the flywheel and its rotational inertia will be 0.64m and 389kgm² respectively.

What is the rotational inertia?

Rotational inertia, also known as moment of inertia, is a measure of an object's resistance to rotational motion. It is similar to the concept of mass in linear motion. Just as mass is a measure of an object's resistance to linear motion, the moment of inertia is a measure of an object's resistance to rotational motion.

The moment of inertia of an object depends on its shape and mass distribution. Objects with more mass distributed farther from the axis of rotation have a higher moment of inertia than objects with the same mass but a more compact distribution of mass. The moment of inertia is measured in units of kilograms square meters (kg m²) in the SI system.

The radius will be:

= 1000 / 15000(2πrad / 60)

= 0.64m

The inertia will be:

= 2(4.8 × 10^8) / 100 (2π/60)

= 389kgm²

Learn more about inertia on

https://brainly.com/question/1830739

#SPJ1

logs sometimes float vertically in a lake because one end has become water-logged and denser than the other. what is the average density of a uniform-diameter log that floats with 20.0% of its length above water?

Answers

Uneven-diameter logs that float with 20.0% of their length above water have an average density of 0.8g/cm3. The density is the proportion of weight to capacity.

An item it's far less compact that liquid may be supported up liquid water, and hence it floats. More dense objects can sink when submerged in water. Less dense logs float whereas more thick logs sink. A body can change its condition of rest or motion by the application of force

Instead of obliquely reading from either the side, read the scale stick straight from of the end of both the log. → The diameter of a log is only ever calculated within the bark. Employ a log measuring rod to determine the log's small end's "diameter from within bark," also known as "d.i.b."

To know more about force click here

brainly.com/question/29044739

#SPJ4

which of the following will increase the capacitance of a parallel-plate capacitor? (there could bemore than one correct choice.) a) an increase in the charge on the platesb) an increase in the potential difference

Answers

D) introduce a dielectric material between the plates, and E) decrease the separation between the plates will increase the capacitance of a parallel-plate capacitor.

The capacitance of a parallel-plate capacitor is given by the formula:

C = εA/d

where C is the capacitance, ε is the permittivity of free space, A is the area of the plates, and d is the distance between the plates.

From this formula, we can see that the capacitance is directly proportional to the area of the plates and the permittivity of free space, and inversely proportional to the distance between the plates. Therefore, the following changes will increase the capacitance of a parallel-plate capacitor:

D) Introduce a dielectric material between the plates: A dielectric material has a higher permittivity than air, which increases the capacitance of the capacitor.

E) Decrease the separation between the plates: A decrease in the distance between the plates increases the capacitance of the capacitor.

Therefore, the correct choices are D) introduce a dielectric material between the plates, and E) decrease the separation between the plates.

Learn more about Capacitor: https://brainly.com/question/17176550

#SPJ11

bob is pushing a box across the floor at a constant speed of 1.4m/s m / s , applying a horizontal force whose magnitude is 55n n . alice is pushing an identical box across the floor at a constant speed of 2.8m/s m / s , applying a horizontal force. a) what is the magnitude of the force that alice is applying to the box?

Answers

The magnitude of the force that Alice is applying to the box is 110 N.

To calculate the force that Alice is applying, we need to use the equation F = ma. In this equation, F is the force applied, m is the mass of the box, and a is the acceleration of the box.

Since Alice is pushing the box at a constant speed of 2.8 m/s, the acceleration is 0, and the equation simplifies to F = 0 x m. Since the force must equal 0 when the acceleration is 0, the magnitude of the force that Alice is applying to the box is 0.

However, since Bob is pushing an identical box across the floor at a constant speed of 1.4 m/s, the acceleration is 0 and the equation simplifies to F = m x a. In this case, a is the acceleration of the box, which is 1.4 m/s.

Since we know that the magnitude of the force Bob is applying is 55 N, we can use the equation to calculate the force Alice is applying. 55 N = m x 1.4 m/s, which simplifies to m = 39.286.

We then substitute m back into the equation F = ma, so F = 39.286 x 1.4 m/s. This simplifies to F = 55.0 N, so the magnitude of the force Alice is applying is 55.0 N.

To know more about constant speed click on below link:

https://brainly.com/question/30151073#

#SPJ11

jasmin, a cyclist, accelerates from rest. after 8 s, the wheels have made 3 revolutions. (a) what is the angular acceleration of the wheels? (b) what is the angular velocity of the wheels after 8 s?

Answers

a. The angular acceleration of the wheels is 0.2945 rad/s². b. The angular velocity of the wheels after 8 seconds is 2.3560 rad/s.

Calculation:

a. The formula for angular acceleration is: α = (ω2 - ω1) / (t2 - t1) Whereα is angular acceleration, ω2 is final angular velocity, ω1 is initial angular velocity, t2 is final time, t1 is initial time. To calculate the angular acceleration, we can use the formula:α = (ω2 - ω1) / (t2 - t1)

The initial angular velocity of the wheels is zero since Jasmin starts from rest, soω1 = 0. We know that the wheels make 3 revolutions after 8 seconds, so the final angular velocity can be calculated as follows: ω2 = (3 revolutions / 8 s) x (2π radians / 1 revolution) = 2.3562 rad/s

Therefore,α = (2.3562 rad/s - 0 rad/s) / (8 s - 0 s) = 0.2945 rad/s². The angular acceleration of the wheels is 0.2945 rad/s².

b. To calculate the angular velocity of the wheels after 8 seconds, we can use the formula:ω = ω1 + αtWhereω is angular velocity,ω1 is initial angular velocity,α is angular acceleration, t is time. The initial angular velocity of the wheels is zero since Jasmin starts from rest, so ω1 = 0

We have already calculated the angular acceleration to be 0.2945 rad/s², and we know that the time is 8 seconds, soω = ω1 + αt = 0 + (0.2945 rad/s²) x (8 s) = 2.3560 rad/s. Therefore, the angular velocity of the wheels after 8 seconds is 2.3560 rad/s.

To know more about angular acceleration, refer here:

https://brainly.com/question/29428475#

#SPJ11

Two pieces of clay are thrown towards each other. The blue clay has a mass of 2 kg and is traveling at 1.5 m/s east. The red clay has a mass of 1.5 kg and is
traveling at 2.5 m/s west (negative velocity). They stick together after they collide. What is the final velocity of the combined clay pieces after the collision? East
is considered positive direction.

Answers

Explanation:

To solve this problem, we can use the law of conservation of momentum, which states that the total momentum of a system is conserved in the absence of external forces.

Before the collision, the momentum of the blue clay is:

momentum of blue clay = mass of blue clay * velocity of blue clay

= 2 kg * 1.5 m/s = 3 kg*m/s to the east (positive)

Before the collision, the momentum of the red clay is:

momentum of red clay = mass of red clay * velocity of red clay

= 1.5 kg * (-2.5 m/s) = -3.75 kg*m/s to the west (negative)

The total momentum before the collision is:

total momentum before collision = momentum of blue clay + momentum of red clay

= 3 kgm/s - 3.75 kgm/s = -0.75 kg*m/s to the west (negative)

After the collision, the two clays stick together and move as one combined object. Let's assume that the final velocity of the combined clay pieces after the collision is v.

By the law of conservation of momentum, the total momentum after the collision is equal to the total momentum before the collision:

total momentum after collision = total momentum before collision

= -0.75 kg*m/s

The combined mass of the two clays after the collision is:

combined mass = mass of blue clay + mass of red clay

= 2 kg + 1.5 kg = 3.5 kg

Therefore, the final velocity of the combined clay pieces after the collision is:

v = total momentum after collision / combined mass

= (-0.75 kg*m/s) / 3.5 kg

= -0.214 m/s to the west (negative)

Since the negative velocity indicates a direction to the west, the final velocity of the combined clay pieces after the collision is 0.214 m/s to the west.

a 6 mf capacitor, a 10 mf capacitor, and a 16 mf capacitor are connected in parallel. what is their equivalent capacitance?

Answers

The equivalent capacitance of a 6 mF capacitor, a 10 mF capacitor, and a 16 mF capacitor connected in parallel is: 32 mF

This is because when capacitors are connected in parallel, their total capacitance is equal to the sum of their individual capacitances. The formula for calculating the equivalent capacitance (C) of capacitors connected in parallel is: C = C1 + C2 + C3 + ... In this example, C = 6 mF + 10 mF + 16 mF = 32 mF.

Capacitors are electrical components that store energy in the form of an electric field between two conductors (plates). When capacitors are connected in parallel, the electric field between the plates of each capacitor is the same, but the overall capacitance is increased due to the combined plate area of all the capacitors.

This increase in plate area is why the equivalent capacitance of the three capacitors in this example is 32 mF, which is larger than any of the individual capacitances.

To know more about capacitors refer here:

https://brainly.com/question/17176550#

#SPJ11

the tilt of the moon's orbit shifts a little bit each year, which changes the dates eclipses occur each year. this shift of the orbital plane is called

Answers

The shift of the Moon's orbit is called precession and it occurs over a period of 18.6 years.

During precession, the tilt of the Moon's orbit changes by up to 5° from its current inclination to the Earth's orbit. This change in the Moon's orbit causes the dates and times of eclipses to shift each year. Solar eclipses occur when the Moon's shadow crosses the Earth, and this requires the Moon to be in a specific position in relation to the Earth. Precession of the Moon's orbit shifts that position, which shifts when and where on the Earth's surface eclipses occur.

Precession also affects the visibility of lunar eclipses. During a lunar eclipse, the Earth's shadow covers the Moon, which means the Moon must be in the Earth's shadow in the first place. As the Moon's orbital inclination changes over time, it affects which parts of the Earth's shadow the Moon will pass through and be visible from, meaning that not all lunar eclipses are visible from the same places.

Precession is an important factor in predicting when and where solar and lunar eclipses will occur. As the Moon's orbital inclination changes, it affects where on Earth an eclipse will be visible from and when it will occur. It's important for astronomers to consider precession when making predictions about eclipses.

For more such questions on Precession.

https://brainly.com/question/30352256#

#SPJ11

a box is given a push so that it slides across the floor. how far will it go, given that the coefficient of kinetic friction is 0.11 and the push imparts an initial speed of 3.8 m/s ?

Answers

The box will slide a distance of 6.96 m before coming to a stop due to the force of kinetic friction.

To determine how far the box will slide on the floor after it is given a push with an initial speed of 3.8 m/s, we need to use the equations of motion for constant acceleration. The force of kinetic friction acting on the box will cause it to decelerate, eventually coming to a stop.

The distance traveled by the box can be found using the equation:

d = [tex](v_i^2 - v_f^2) / (2 * a)[/tex]

where d is the distance traveled, v_i is the initial speed, v_f is the final speed (which is zero since the box comes to a stop), and a is the deceleration caused by the force of kinetic friction.

The deceleration can be found using the equation:

a = -F[tex]_friction / m[/tex]

where Ffriction is the force of kinetic friction and m is the mass of the box.

Assuming a mass of 5 kg for the box and a coefficient of kinetic friction of 0.11, the force of kinetic friction can be found using the equation:

F_friction = friction coefficient * F_normal

where F_normal is the normal force (equal to the weight of the box) and the friction coefficient is a dimensionless quantity that depends on the nature of the contact surface.

The weight of the box is:

Fweight = m * g

where g is the acceleration due to gravity (9.81 m/s²).

Therefore, the force of kinetic friction is:

F_friction = (0.11) * (5 kg * 9.81 m/s²) = 5.40 N

Using the equation for deceleration, we get:

a = -Ffriction / m = -(5.40 N) / (5 kg) = -1.08 m/s²

Finally, we can use the equation for distance traveled to find the distance the box will slide:

d = [tex](v_i^2 - v_f^2) / (2 * a)[/tex] =[tex](3.8 m/s)^2 / (2 * 1.08 m/s^2)[/tex] = 6.96 m

Learn more about kinetic: https://brainly.com/question/26472013

#SPJ11

you are holding a box of books with flat hands. if you press harder, what happens to the friction force applied by your hands onto the sides of the box?

Answers

When you hold a box of books with flat hands and press harder, the friction force applied by your hands onto the sides of the box will increase.

The force causes motion because if an object is at rest, it remains at rest until acted upon by a force. If the object is in motion, it remains in motion unless acted upon by a force to slow it down, speed it up, or change its direction. So, we have to look at the direction of the force and the motion to understand how the force will affect it. In general, the frictional force opposes motion.

The force of friction is proportional to the force pressing the two surfaces together. In this case, the force pressing the box onto your hands will be greater if you press harder, resulting in a greater frictional force applied by your hands onto the sides of the box, according to Coulomb's laws. Therefore, the friction force will increase when you press harder.

Learn more about friction force at https://brainly.com/question/15122221

#SPJ11

when rotating the platform, the hanging mass should be removed from the platform. question 2 options: true false

Answers

The given statement, while the platform is rotating, the hanging mass remains attached to the test mass and is not removed from the platform is true, if the purpose of the experiment or test is to determine the effect of the hanging mass on the rotation or stability of the platform.

In this case, the hanging mass must remain attached to the test mass during the rotation to observe the behavior of the system under the specified conditions. If the purpose of the experiment or test is to study the effect of the hanging mass on the platform's rotation or stability, the hanging mass must remain attached to the test mass during the rotation. This is because the presence of the hanging mass affects the overall weight and center of gravity of the system. Removing the hanging mass would alter the system's behavior and prevent accurate observations of the phenomenon under investigation. Therefore, if the experiment requires the hanging mass to be present, it must remain attached to the test mass while the platform is rotating.

To know more about platform, here

brainly.com/question/22850608

#SPJ4

--The complete question is, While the platform is rotating, the hanging mass remains attached to the test mass and is not removed from the platform. State true/false.--

Which of the following is an example of the law of acceleration?

A - Sitting in your chair and breaking it.
B - Changing your force to accelerate a baseball different distances
C - A train traveling at constant speed.
D - Throwing a ball in space and it goes on FOREVER.

Answers

The correct answer is B - Changing your force to accelerate a baseball different distances.


Newton's second law of motion is also called the law of acceleration. It tells us that if we push or pull an object, it will move in the direction of the push or pull, and the harder we push or pull it, the faster it will move. The law also says that heavier objects will move more slowly than lighter objects when the same amount of force is applied.

In the example given in option B, the force applied to the baseball is changing, which means that the acceleration of the baseball is also changing. This is a clear demonstration of the law of acceleration. Option A does not involve any acceleration, option C involves constant speed (not acceleration), and option D involves throwing a ball in space without any forces acting on it to change its acceleration.

you are standing on a scale in an elevator. suddenly you notice your weight increases. what do you conclude?

Answers

When standing on a scale in an elevator, if one notices an increase in their weight, it means that: the elevator is accelerating upwards.

This is due to the fact that the scale underfoot has to counter the upward acceleration of the elevator, which causes the weight measured on the scale to increase. The scale measures the normal force, which is the weight being exerted on the scale, which is equal to the mass of the individual multiplied by the gravitational acceleration on the surface of the earth.

This can be represented by the formula: W = mg,

where W is the weight, m is the mass of the object and g is the gravitational acceleration.

When the elevator is stationary or moving at a constant velocity, the gravitational acceleration is the same as the normal force and the weight of the individual remains constant. However, when the elevator begins to accelerate upwards, the normal force exerted by the scale must increase to counter the upward acceleration of the elevator.

This causes an increase in weight measured on the scale. Therefore, if one notices an increase in their weight while standing on a scale in an elevator, it indicates that the elevator is accelerating upwards.

To know more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

a syringe containing an incompressible fluid is oriented vertically and the plunger slowly depressed. at which point is the kinetic energy the lowest?

Answers

The point at which the kinetic energy is lowest is 3 in the syringe containing an incompressible fluid that is vertically oriented and the plunger is slowly depressed.


What is kinetic energy?

The kinetic energy of an object is the energy it has due to its motion. When an object is in motion, it has kinetic energy. It is a scalar quantity that is proportional to the mass of the object and the square of its velocity. The formula for kinetic energy is given as follows:

                                KE = 1/2mv²

Where m is the mass of the object and v is its velocity.

Points 1 and 2 have higher kinetic energy because the incompressible fluid is still being compressed in the syringe. Point D is incorrect because the kinetic energy of the incompressible fluid is not the same at all three points. Point E is incorrect because enough information has been provided. Therefore, when a syringe containing an incompressible fluid is vertically oriented and the plunger is slowly depressed, the kinetic energy is lowest at point 3.

Learn more about kinetic energy at https://brainly.com/question/25959744

#SPJ11

A wooden brick with mass M is suspended at the end of cords as shown above. A bullet with mass m is fired toward the brick with speed v0. The bullet collides with the brick embedding itself into the brick. The brick-bullet combination will swing upward after the collision. Consider the brick, earth, and bullet as part of a system. Express your algebraic answers in terms of quantities given and fundamental constants.

(a) During the collision of the brick and the bullet, compare the magnitude and direction of the impulse acting on the brick to the impulse acting on the bullet. Justify your answer.

(b) Determine the magnitude of the velocity v of the brick-bullet combination just after the collision.

c) Determine the ratio of the final kinetic energy of the brick-bullet combination immediately after the collision to the initial kinetic energy of the brick-bullet combination.

(d) Determine the maximum vertical position above the initial position reached by the brick-bullet combination.
BoldItalicUnderline

Answers

Answer: the answer given below

(a) Explanation: The impulse on an object is given by the change in momentum of the object. Before the collision, the bullet has momentum p1 = mv0 and the brick has momentum p2 = 0, since it is stationary. After the collision, the combined bullet-brick system has momentum p3.

Conservation of momentum requires that the total momentum before the collision is equal to the total momentum after the collision:

p1 + p2 = p3

mv0 + 0 = (m + M)V

where V is the velocity of the combined bullet-brick system after the collision. Solving for V, we get:

V = (mv0) / (m + M)

The impulse on the bullet during the collision is equal to the change in momentum of the bullet:

J_bullet = p3 - p1 = (m + M)V - mv0

Substituting the expression for V we found earlier:

J_bullet = (m + M)(mv0) / (m + M) - mv0 = 0

Therefore, the impulse on the bullet is zero during the collision.

On the other hand, the impulse on the brick during the collision is:

J_brick = p3 - p2 = (m + M)V - 0 = (m + M)(mv0) / (m + M) = mv0

Therefore, the magnitude of the impulse acting on the brick is equal to the initial momentum of the bullet, mv0, and it is in the same direction as the initial velocity of the bullet.

In summary, during the collision of the bullet and the brick, the impulse acting on the bullet is zero, while the impulse acting on the brick is mv0 in the direction of the initial velocity of the bullet.

(b) We can use the principle of conservation of momentum to solve for the velocity of the brick-bullet combination just after the collision. The total momentum of the system (bullet, brick, and Earth) is conserved before and after the collision. Initially, only the bullet has momentum, which is given by p1 = m*v0, and the momentum of the brick and Earth is zero. After the collision, the bullet becomes embedded in the brick, and the combined system of the brick-bullet has momentum p2. Since the momentum of the Earth is negligible compared to that of the bullet and brick, we can treat the system as closed and apply conservation of momentum:

p1 = p2

m*v0 = (M + m)*v

where v is the velocity of the combined system just after the collision.

Solving for v, we get:

v = (m*v0) / (M + m)

Therefore, the magnitude of the velocity of the brick-bullet combination just after the collision is:

|v| = |(m*v0) / (M + m)|

The direction of the velocity is upward, as the system swings up after the collision due to the conservation of momentum.

(c) The initial kinetic energy of the system is the kinetic energy of the bullet just before the collision, which is given by:

KE1 = (1/2)mv0^2

The final kinetic energy of the system is the kinetic energy of the combined brick-bullet system just after the collision, which is given by:

KE2 = (1/2)*(M + m)*v^2

Substituting the expression we found for v:

KE2 = (1/2)(M + m)[(mv0) / (M + m)]^2

KE2 = (1/2)(m*v0^2) / (1 + M/m)

The ratio of the final kinetic energy to the initial kinetic energy is:

KE2 / KE1 = [(1/2)(mv0^2) / (1 + M/m)] / [(1/2)mv0^2]

KE2 / KE1 = 1 / (1 + M/m)

Therefore, the ratio of the final kinetic energy of the brick-bullet combination immediately after the collision to the initial kinetic energy of the brick-bullet combination is:

KE2 / KE1 = 1 / (1 + M/m)

(d)To determine the maximum vertical position reached by the brick-bullet combination, we can use conservation of energy, assuming there is no energy loss due to friction or other dissipative forces. At the maximum height, the kinetic energy of the system is zero, and all the initial kinetic energy has been converted to potential energy due to the height above the initial position.

The initial total energy of the system is the sum of the initial kinetic energy of the bullet and the gravitational potential energy of the brick:

E1 = (1/2)mv0^2 + Mgh1

where h1 is the initial height of the brick above the ground, and g is the acceleration due to gravity.

At the maximum height, the final total energy of the system is the potential energy due to the height above the ground:

E2 = (M + m)gh2

where h2 is the maximum height reached by the brick-bullet combination above the initial position.

Since there is no energy loss, we can set the initial energy equal to the final energy:

E1 = E2

Substituting the expressions for E1 and E2 and solving for h2, we get:

(M + m)gh2 = (1/2)mv0^2 + Mgh1

h2 = [(1/2)mv0^2 + Mgh1] / [(M + m)*g]

Simplifying, we get:

h2 = (1/2)v0^2 / g + h1(M/m) / (1 + M/m)

Therefore, the maximum vertical position above the initial position reached by the brick-bullet combination is:

h2 = (1/2)v0^2 / g + h1(M/m) / (1 + M/m)

Hope this helps :)

HELP ME PLEASE!!!
Which 2 statements are true about this chemical reaction that forms acid rain?

Answers

However, in general, acid rain is formed when sulphur dioxide (SO2) and nitrogen oxides (NOx) are emitted into the atmosphere by human activities, such as burning fossil fuels.

Which of the following is incorrect about the main cause of acid rain?

The erroneous statement among the following is : Acid rain is largely because to oxides of nitrogen and sulphur The greenhouse effect is to blame for the world's warming. Infrared radiation from the sun cannot reach earth due to the ozone layer.

What does acid rain consist of ?

Nitric and sulphuric acids are created when the gases nitrogen oxides and sulphur dioxide interact with the minute droplets of water in clouds. The rain from these clouds falls as very weak acid known as 'Acid rain'.

To know more about radiation visit:-

https://brainly.com/question/28202771

#SPJ1

Question:

"Which two of the following statements are true about the chemical reaction that forms acid rain?

a. Sulfur dioxide and nitrogen oxides react with water to form sulfuric acid and nitric acid.

b. Acid rain can cause damage to buildings and statues made of limestone or marble.

c. Acid rain is only a problem in areas with a high population density.

d. Acid rain has no effect on freshwater ecosystems."

pry on the power steering reservoir to adjust the tension of the power steering belt. true or false?

Answers

The statement "pry on the power steering reservoir to adjust the tension of the power steering belt" is: false.

The tension of the power steering belt is adjusted by adjusting the position of the power steering pump. There is a tension adjustment bolt on the power steering pump that is used to adjust the tension of the power steering belt. The adjustment bolt should be turned clockwise or counterclockwise to adjust the tension of the belt.

A belt tension gauge may be used to ensure that the belt is properly tensioned. A pry bar should not be used on the power steering reservoir to adjust the tension of the power steering belt. This could cause damage to the reservoir or other components of the power steering system. The reservoir should be inspected for damage or leaks, but it should not be used to adjust the tension of the belt.

In summary, the tension of the power steering belt should be adjusted by adjusting the position of the power steering pump, not by prying on the power steering reservoir.

To know more about tension refer here:

https://brainly.com/question/29869473#

#SPJ11

Shown here is a plot of a pairwise potential between two interacting particles. The particles are initially at rest at ro 1.130 , and 1.2E energy is added as work. The two interacting particles define a closed system. Your plots should only extend into regions where particles separations are physically possible. a) Plot Etotal and KE as a function of r. Clearly mark rmin, Fmax if they apply. Explain how you determined your plots and their ranges. b) Are the particles described above bound or un-bound? Explain your reasoning.

Answers

The solution to the given problem is shown below: a) r = rmin, the particles are in equilibrium and do not move. b) The particles are bound because they need an external energy of 0.703E to be separated to an infinite distance.

a). Plot Etotal and KE as a function of r.

The potential energy (U) for the given potential function isU(r) = 2.25 [(ro/r)^12 - 2(ro/r)^6]The force, F(r) is given by the negative of the derivative of the potential energy function (r) = -dU/dr = 2.25 (12(ro/r)^13 - 12(ro/r)^7) / rEtotal and KE can be calculated using the following equations:

Etotal = KE + UKE = (1/2) mu^2Here,

m = mass of each particle and

u = relative velocity of the particles

We know that the total energy (Etotal) of the particles is 1.2E.

Therefore, KE = Etotal - U

The plot of Etotal and KE as a function of r is shown below:

The range of r can be determined by the range of the potential energy function, which is [ro, infinity).

The minimum potential energy (Umin) can be determined by finding the minimum value of the potential energy function. This can be found by equating dU/dr = 0, which gives (ro/r)^13 = (ro/r)^7.

Solving this equation gives r = ro (rmin).

At r = rmin,

the potential energy function has its minimum value Umin = -0.703E.

The maximum force (Fmax) can be found by equating dF/dr = 0, which gives

r = 1.122 ro.

At r = 1.122 ro,

the force has its maximum value Fmax = 2.355E.

The plot shows that Etotal is minimum at r = rmin and maximum at r = infinity.

KE is zero at r = rmin and maximum at r = infinity.

At r = rmin, the particles are in equilibrium and do not move.

b) The particles described above are bound. The potential energy function has a minimum value of Umin = -0.703E. Therefore, the particles are bound because they need an external energy of 0.703E to be separated to an infinite distance.

For more such questions on equilibrium

brainly.com/question/517289

#SPJ11

a system releases 690 kj of heat and does 110 kj of work on the surroundings. part a what is the change in internal energy of the system?

Answers

A  system releases 690 kj of heat and does 110 kj of work on the surroundings then part a what i the change in internal energy of the system  -800 kJ.


The change in internal energy of the system can be calculated using the formula

ΔU = Q - W,

where ΔU is the change in internal energy, Q is the heat exchanged, and W is the work done.

In this case, the system releases 690 kJ of heat (Q = -690 kJ) and does 110 kJ of work on the surroundings (W = 110 kJ).

So, ΔU = -690 kJ - 110 kJ = -800 kJ.

The change in internal energy of the system is -800 kJ.

Know more about   internal energy   here:

https://brainly.com/question/30207866

#SPJ11

a boat moves through the water with two forces acting on it. one is a 2103 n forward push by the motor on the propeller, and the other is a(n) 1,586 n resistive force due to the water around the bow. what is the acceleration of the 1193 kg boat?

Answers

When a boat moves through water, it experiences two forces: the forward push provided by the motor on the propeller and the resistive force created by the water around the bow. The acceleration of the 1193 kg boat is 0.404 m/s².

The net force acting on the boat can be calculated by subtracting the resistive force from the forward force:

F_net = F_forward - F_resistiveF_net = 2103 N - 1586 NF_net = 517 N

The acceleration of the boat can be calculated using the formula: a = F_net/m Where F_net is the net force acting on the boat, and m is the mass of the boat. Substituting the values we know, a = 517 N / 1193 kg a = 0.404 m/s²Therefore, the acceleration of the 1193 kg boat is 0.404 m/s².

To know more about acceleration, refer here:

https://brainly.com/question/28587095#

#SPJ11

when a toolbox weighing 5 newtons is resting on the ground next to a sawhorse, how much potential energy does it have?

Answers

The potential energy of a toolbox weighing 5 newtons is zero.

The potential energy of a toolbox weighing 5 newtons depends on its height relative to the ground.

Potential energy (PE) is equal to the mass of the object (m) multiplied by the acceleration due to gravity (g) multiplied by its height (h): PE = mgh.

Therefore, the potential energy of the toolbox is equal to 5*9.8*h (where h is the height of the toolbox above the ground).

Assuming that the toolbox is resting on the ground, it has zero potential energy since its height is zero. If the toolbox is lifted above the ground, however, then it will have a greater potential energy.

For example, if the toolbox is lifted to a height of 10 meters above the ground, then it will have a potential energy of 490 joules (5*9.8*10).

The potential energy of the toolbox when it is placed next to the sawhorse, the height of the sawhorse needs to be taken into consideration.

If the sawhorse is higher than the ground, then the toolbox will have a greater potential energy since it will be located at a greater height above the ground.

If the sawhorse is lower than the ground, then the toolbox will have a lesser potential energy than when it is resting on the ground.

The potential energy of a toolbox weighing 5 newtons when placed next to a sawhorse depends on the height of the sawhorse relative to the ground.

If the sawhorse is higher than the ground, then the toolbox will have a greater potential energy, and if it is lower than the ground, then the toolbox will have a lesser potential energy.

to know more about potential energy refer here:

https://brainly.com/question/24284560#

#SPJ11

A 750-kg roller coaster car drops from rest at a height of 90.0 m along a frictionless track. If the coefficient of kinetic friction due to braking along a horizontal track at the end of the ride is 0.720, over what distance does the car need to brake to come to a complete stop?

Answers

Roller coaster car's mass -
m
=
750

k
g
m=750 kg
Initial height -
h
1
=
90

m
h
1

=90 m
Coefficient of friction -
μ
k
=
0.72
μ
k

=0.72
Other Questions
A rectangle has an area of 15 square yards. The width is 2 yards less than the length. What is the length, in yards, of the rectangle? A: 2 yards B: 3 yards C: 5 yards D: 15 yards A quadratic function passes through the points (-2,5) and (-8,5) and has a graph in the xy-plane that opens downward. Which of these could be the coordinates of the highest point of the graph?O (5, 1)O (5, 8)O (5, 1) O (5, 8) The measure of an angle is twice less than that of its supplement angle. We went every day... with our books wrapped in paper to prevent the police or white persons from seeing them."-from the memoir of a free African American living in the NorthThe speaker probably wanted to hide the books because_1. the law in all parts of the United States made it illegal for African Americans to learn to read2. the police would think the books were stolen3. African Americans were not proud of their schools4. African Americans faced discrimination from people who saw their progress as a threat a positive clinitest with a yellow precipitate is noted from a patient with liver and cardiac abnormalities. what should the mls do next? in bridge, south has 13 points and 3 clubs and bids 1 club. north responds with 3 clubs, what does that mean? which of the following is not an example of a consumer? herbivores omnivores heterotrophs carnivores photosynthesizers which of the following sought to address the great depression by reducing production? responses the reconstruction finance corporation the reconstruction finance corporation the national labor relations act the national labor relations act the civilian conservation corps the civilian conservation corps the glass-steagall act the glass-steagall act the agricultural adjustment act lacey enjoys banging a wooden spoon on her high chair tray, and she does this over and over again. this is best defined as: he annual demand is 2000 units and the lead time for restocking is 3 days. assuming 50 weeks a year and 5 days a week what is the pipeline inventory? which term refers to a product or service, such as a technical report, a training session, a piece of hardware, or a segment of software code, produced or provided as part of a project? a. using the regular percentage change method, the price of umbrellas increases from $60 per umbrella to $80 per umbrella? consider the following table. what is the probability of red? red blue total yes 15 21 36 no 38 13 51 total 53 34 87 g the importance of rules for organizational functioning is a feature of... a. weber's bureaucracy. b. giddens' structuration. c. taylor's scientific management. d. fayol's classical management. A researcher is studying life Expectancy in different parts of the world. Using birth and death records, she randomly select a sample of 20 people from town A and a sample of 20 people from town B and record their lifespan in years. The researcher wants to test the claim that there is a significant difference in life span for people in the two towns. What are the Noel and alternative hypotheses that should be used to test this claim? Please see photo below for the options of answer , thank you! what device will produce an electrical current when a turbine is used to rotate an iron core wrapped with a coil of wire near a magnet? primates teeth are unique because they are group of answer choices blunt. sharp. heterodont. homodont. - What can be concluded about the history of immigrants in the United States afterreading this passage?I need this right now pls Someone :( in the text, are human resources used as an example of tangible or intangible resources? do you agree with that classification? why or why not? The excerpt is from "Evelines Visitant," a short story published in 1867 by Mary ElizabethBraddon. In this passage, the narrator, Hector de Brissac, recalls an encounter with hiscousin Andr. Read the passage carefully. Then, in a well-written essay, analyze howBraddon uses literary elements and techniques to convey the complex nature of Hector andAndrs relationship