Answer:
Below
Explanation:
Work = force * distance
240 000 J = force * 50 m
240 000 / 50 = force = 4800 N
Two charges each 2 x 10-7 C but opposite in sign forms a system. These charges are located at
points A (0,0, -10) cm and B(0,0, +10) cm respectively. What is the total charge and electric dipole
moment of the system?
Answer:
i) Total charge of the
system
= 2 x 10 -7 + (-2 x 10 -7)
= zero P
(ii)
P =q x 2i
P= 2 x 10-7 x 20 x 10-2
P = 4 x 10-8 cm
Direction of Dipole moment – Along negative z-axis.
Explanation:
Food can be eaten in or form
Answer:
from - from the mouth .............
!!WILL MARK BRAINLIEST!! Please help
Answer:
17. A
18. C
Explanation:
np:) and have a wonderful day
You are moving into an apartment and take the elevator to the 6th floor suppose your weigh is 685N and that of your belongings is 915N. Determine the work done by the elevator is lifting you and your belongings up to the 6th floor 15.2m at acontant velocity
If a sunspot has a temperature of 4,360 K and the sunspot can be considered a blackbody, what is the wavelength (in nm) of maximum intensity of the sunspot's radiation?
Given :-
A sunspot has a temperature of 4360 K .Sunspot can be considered as a black body .To find:-
The wavelenght of maximum intensity .Answer :-
Here we are given that the sunspots temperature is 4360K , and considering it as a black body we need to find out the wavelength of its maximum intensity.
So here we can use Wein's displacement Law according to which;
[tex]\qquad\: \underset{\rm\small Wein's \ displacement \ law }{\underbrace{\underline{\underline{ \green{ \quad\quad\lambda_{max}= b/T \quad\quad}}}}} \\[/tex]
where ,
[tex]\lambda_{max}[/tex] is maximum wavelength.[tex] b [/tex] = Wein's displacement constant = 2.89 * 10-³ m K [tex] T[/tex] is temperature in KelvinNow on substituting the respective values, we have;
[tex]\implies \lambda_{max}= \dfrac{2.89\times 10^{-3}m\ K}{4360K}\\[/tex]
[tex]\implies \lambda_{max}= 0.0006628 \times 10^{-3}\ m\\[/tex]
[tex]\implies \lambda_{max}=0.000663 \times 10^{-3}\ m\\[/tex]
[tex]\implies\underline{\underline{\green{ \lambda_{max}= 663 \times 10^{-9} m = 663\ nm }}} \\[/tex]
Hence the maximum wavelength is 663 nm .
and we are done!
Bumblebees are skilled aerialists, able to fly with confidence around and through the leaves and stems of plants. In one test of bumblebee aerial navigation, bees in level flight flew at a constant 0.40 m/s, turning right and left as they navigated an obstacle-filled track. While turning, the bees maintained a reasonably constant centripetal acceleration of 4.0 m/s2.
What is the radius of curvature for such a turn?
How much time is required for a bee to execute a 90 degree turn?
The radius of curvature for the turn is 0.10 m. The time required for a bee to execute a 90 degree turn is 0.56 seconds.
How do bumblebees navigate through obstacle-filled tracks?Bumblebees are skilled aerialists and can fly with confidence around and through the leaves and stems of plants. They navigate obstacle-filled tracks by maintaining a reasonably constant centripetal acceleration of 4.0 m/s2 while turning right and left in level flight at a constant speed of 0.40 m/s.
The centripetal acceleration of a body moving in a circular path can be expressed as a = v^2 / r, where a is the centripetal acceleration, v is the speed of the body, and r is the radius of curvature.
Given that the bumblebees maintain a constant centripetal acceleration of 4.0 m/s^2 while turning, and their speed is 0.40 m/s, we can calculate the radius of curvature as:
r = v^2 / a = 0.40^2 / 4.0 = 0.04 m = 0.10 m (rounded to two significant figures)
To find the time required for a bee to execute a 90 degree turn, we need to know the distance it travels during the turn. Since the turn is a quarter of a circle, the distance traveled is a quarter of the circumference of the circle with a radius of 0.10 m, which is:
d = (πr)/2 = (3.14 x 0.10)/2 = 0.157 m
The time required to travel this distance at a constant speed of 0.40 m/s is:
t = d/v = 0.157 / 0.40 = 0.3925 s = 0.56 s (rounded to two significant figures)
Learn more about "centripetal acceleration" here:
https://brainly.com/question/14465119
#SPJ1
2)A three-phase four-pole winding of the double-layer type is to be installed on a 48-slot stator. The pitch of the stator windings is 5/6, and there are 10 turns per coil in the windings. All coils in each phase are connected in series, and the three phases are connected in . The flux per pole in the machine is 0.054 Wb,and the speed of rotation of the magnetic field is 1800 r/min. (a) What is the pitch factor of this winding? (b) What is the distribution factor of this winding? (c) What is the frequency of the voltage produced in this winding? (d) What are the resulting phase and terminal voltages of this stator?
(a) The pitch factor of a three-phase winding is given by Kp = cos(π/6m), where m is the number of slots per pole per phase. Here, m = 48 slots/(4 poles x 3 phases) = 4 slots/pole/phase. Therefore, Kp = cos(π/6 x 4) = cos(π/2) = 0.
(b) The distribution factor of a double-layer winding is given by Kd = sin(π/2p), where p is the number of poles. Here, p = 4, so Kd = sin(π/8) = 0.3827.
(c) The frequency of the voltage produced in the stator winding is given by f = (P/2) × (N/60), where P is the number of poles and N is the speed of rotation in rpm. Here, P = 4 and N = 1800 rpm, so f = (4/2) × (1800/60) = 60 Hz.
(d) The resulting phase voltage of this stator can be calculated using the formula Vφ = 4.44 × f × Φ × Z × K, where Φ is the flux per pole, Z is the total number of conductors in series per phase, and K is the product of the pitch factor and the distribution factor. For this winding, Z = 10 turns/coil x 2 coils/slot x 48 slots/3 phases = 160 conductors/phase, and K = 0 x 0.3827 = 0.
Therefore, Vφ = 4.44 × 60 × 0.054 × 160 × 0 = 0 V.
Since this is a three-phase winding, the resulting terminal voltage will be the line-to-line voltage, which is √3 times the phase voltage. Therefore, the resulting terminal voltage of this stator is 3 × Vφ = 3 × 0 = 0 V.
learn more about frequency here
https://brainly.com/question/254161
#SPJ1
a 12 kg object has a velocity of 8.0 m/s and is moving in a circle of a radius 16 m
The centripetal force of the object is determined as 48 N.
What is centripetal force?
Centripetal force is the force that acts on an object moving in a circular path, directed towards the center of the circle. It is the force that keeps the object moving in a circle, rather than continuing in a straight line.
The centripetal force required to keep an object moving in a circle is given by the formula:
F = (mv²)/r
where:
m = mass of the objectv = velocity of the objectr = radius of the circleSubstituting the given values, we get:
F = (12 kg)(8.0 m/s)² / 16 m
F = 48 N
Learn more about centripetal force here: https://brainly.com/question/20905151
#SPJ1
The complete question is below:
A 12 kg object has a velocity of 8.0 m/s and is moving in a circle of a radius 16 m. calculate the centripetal force of the object
Please help me with this one
Gravity causes a rock to accelerate downwards at a rate of 32 ft/sec/sec. How far does it travel in a time of 3.5 sec?
The distance traveled by the rock at 3.5seconds is 392ft.
How to calculate distance?Distance moved by a body can be calculated by using the following formula:
Speed = distance/time
Acceleration = speed/time
According to this question, gravity causes a rock to accelerate downwards at a rate of 32 ft/sec/sec. The speed can be calculated as follows:
Speed = 32ftsec-² × 3.5sec
Speed = 112ft/sec
Distance moved = 112ft/sec × 3.5sec
Distance = 392ft
Learn more about distance at: https://brainly.com/question/13034462
#SPJ1
A waveform with a wavelength of 2.5 meters is graphed. How far apart will each node be? __m
Answer:
If the wavelength is 2.5 meters, each node will be half a wavelength apart from each other. Therefore, each node will be 1.25 meters apart.
Explanation:
The distance between nodes of a standing wave is equal to half the wavelength of the wave. This is because nodes are points along the wave where there is zero amplitude or displacement, and they occur at fixed intervals that are determined by the wavelength of the wave. Therefore, the distance between nodes is directly proportional to the wavelength of the wave.
2. Dimensions of weight is
a. MLT-¹
b. MLT-2
c. ML²T-2
d. MºLT-2
Answer:
M 1 L 1 T-2
Explanation:
PLEASEEEE HELP MEEEE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(I will give a brainlist)
1. Tape one magnet to a smooth, flat surface. Place the other magnet on that surface 10 cm away, oriented so that its north pole is facing the south pole of the other magnet. Slowly push the free magnet toward the magnet that is taped down. What do you observe? (1 point)
2. Gently push the free magnet toward the taped magnet again. How far apart are they when the free magnet first starts to be pulled? Use the ruler to measure the distance between the magnets. (1 point)
3. Repeat Steps 1 and 2, but this time, position the magnets so that their north poles are facing each other. At what distance do the magnets begin to repel each other? (2 points)
4. Place the free magnet in each of the positions shown in the table below. For each position, describe what happens after you let go of the magnet. Draw a diagram that shows the final positions of both magnets. Make sure to label the north pole (N) and south pole (S) of each magnet. (12 points)
5. Cut four pieces of tape that are 15 cm long. Fold over one end of each piece of tape to make a tab that is about 2 cm long.
6. Stick one piece of tape to the top of a smooth, flat table. Using a marker, label the tab "B1." Rub the tape with the side of the marker to smooth out any air bubbles. Stick a second piece of tape on top of the first and smooth out the air bubbles again. Label the tab of this piece "T1."
7. Repeat Steps 5 and 6 with the remaining two pieces of tape, but label the bottom tab "B2" and the top tab "T2."
8. Use the tab to peel T1 off of B1. Stick it vertically to the edge of the table so that the tab is at the top and the tape hangs down below the table. Then peel B1 off the table. Hang it from the table edge in the same way. The two pieces of tape must be at least 10 cm away from each other and from the legs of the table.
9. Peel off T2. Hold it by the tab with the sticky side facing you.
10. With your other hand, hold a ruler perpendicular to the table edge, with the zero mark against the table next to the tape labeled T1. Hold the tab of T2 at the other end of the ruler. The diagram shows how to arrange the tape and the ruler. Slowly move T2 along the ruler toward T1. Watch for a change at the bottom end of each piece of tape. Measure the distance between the top ends of the pieces of tape when you first notice the change. What happened? Continue moving T2 closer to T1. What happened? Record the distance and your observations in the Electric Fields Data Table provided below Step 12. (4 points)
11. Repeat Step 10, this time moving T2 toward the hanging piece of tape labeled B1. (4 points)
12. If any of the pieces of tape are stuck together, carefully pull them apart. Discard the piece of tape labeled T2. Then repeat Steps 9 – 11 using the piece labeled B2 that is still stuck to the tabletop. (8 points)
1. What can you conclude about magnetic force based on your results in Steps 1 – 3? Use your data to support your conclusions. (4 points)
2. A magnetic field is the area around a magnet where its force can be felt. Magnetic fields are invisible. How did Part 1 of the Procedure and Data section provide evidence that magnetic fields exist? (4 points)
3. How could you change the design of the experiment to determine the size of the magnetic field around the magnet that was taped down? (2 points)
4. In Part 2 of the Procedure and Data section, how did the pieces of tape affect each other? Why did they attract, repel, or have no effect on each other? (4 points)
5. Like magnetic fields, electric fields are invisible. How did the experiment allow you to gather evidence that electric fields exist? (4 points)
Answer:
Explanation:
When the free magnet is pushed toward the magnet that is taped down, it will be attracted to it and will move towards it.
The distance between the magnets when the free magnet first starts to be pulled will depend on the strength of the magnets and the orientation of their poles. Use the ruler to measure the distance between the magnets when the free magnet starts to be pulled.
When the magnets are positioned so that their north poles are facing each other, they will begin to repel each other when they are brought close enough. Measure the distance at which the magnets begin to repel each other using the ruler.
The table below shows the positions of the free magnet and the magnet that is taped down, as well as a description of what happens when the free magnet is released.
Position Description Diagram
Position 1 The free magnet is placed directly above the magnet that is taped down. When released, the free magnet will stick to the taped down magnet with opposite poles attracting. N-S
Position 2 The free magnet is placed beside the taped down magnet with opposite poles facing each other. When released, the free magnet will move towards the taped down magnet and stick to it. N-S
Position 3 The free magnet is placed beside the taped down magnet with like poles facing each other. When released, the free magnet will move away from the taped down magnet due to repulsion. N-N or S-S
Position 4 The free magnet is placed directly beside the taped down magnet with like poles facing each other. When released, the free magnet will move away from the taped down magnet due to repulsion. N-N or S-S
5-12. Follow the steps to prepare and conduct the experiment using the pieces of tape.
a. Based on the observations in Steps 1-3, it can be concluded that magnetic force is present between two magnets with opposite poles attracting and like poles repelling each other. The strength of the force depends on the distance between the magnets and the orientation of their poles.
b. Part 1 of the Procedure and Data section provided evidence that magnetic fields exist because the magnets were able to exert a force on each other without direct contact. This suggests that there is an invisible force field surrounding the magnet that can interact with other magnetic objects.
c. To determine the size of the magnetic field around the magnet that is taped down, the experiment could be modified by placing the free magnet at different distances from the taped down magnet and measuring the strength of the force between them. This would allow for a better understanding of how the magnetic field changes with distance from the magnet.
d. In Part 2 of the Procedure and Data section, the pieces of tape affected each other due to the presence of electric fields. When the second piece of tape was brought close to the first, it caused a change in the electric field, which in turn caused a change in the behavior of the first piece of tape. Depending on the orientation of the electric fields, the pieces of tape could attract, repel, or have no effect on each other.
e. The experiment allowed evidence to be gathered that electric fields exist by observing the behavior of the pieces of tape when they were brought close to each other. The presence of a change in the behavior of the tape when the electric fields were affected suggests that there is an invisible force field surrounding the tape that can interact with other electrically charged objects.
The experiment demonstrates the principles of magnetism and electrostatics. By moving magnets or charged objects closer or further apart, the extent of the respective fields can be measured.
Explanation:This experiment demonstrates the invisible forces of magnetism and electrostatics. In steps 1 to 3, the magnets attract each other when their opposite poles (north and south) face each other, and they repel when similar poles (north and north, or south and south) face each other. This distance at which attraction or repulsion starts represents the extent of the magnetic field. In steps 4 to 12, the experiment uses tape to illustrate electrostatic forces. When tape is peeled from a surface, it becomes statically charged. Two pieces of tape that have the same charge will repel each other while different charges attract. The distance at which this occurs represents the extent of the electric field. To measure the size of a magnetic field, you could use a device called a magnetometer or you could move a magnet towards a stationary magnet and measure the distance at which the moving magnet begins to move. These procedures provide evidence of the existence of invisible magnetic fields and electric fields.
Learn more about Magnetism and Electrostatics here:https://brainly.com/question/35879848
#SPJ2
The brakes on a train do 350,000 J of work to stop the caboose when it enters the platform. If 70,000 N of force is applied to stop the vehicle, then how far does the caboose travel after the brakes are applied?
A.14 m
B.0.2
C.5 m
D.7 m
According to the question the caboose travels 7 m after the brakes are applied.
What is caboose?Caboose is a term used to describe the last car in a freight train. It is typically designed to house a crew of railroad personnel, such as a conductor, a flagman, and a brakeman. The purpose of the caboose is to provide a safe place for the crew to observe the train and to signal any errors or problems to the engineer. The caboose also serves as a living and working space for the crew, providing a bed, cooking facilities, and a desk. The signalman in the caboose communicates with the engineer by means of a lamp or radio. The caboose also serves as a weight to help slow the train when necessary.
The work done (350,000 J) is equal to the force applied (70,000 N) multiplied by the distance traveled (x). Therefore, x = 350,000 J / 70,000 N = 5 m. Since the caboose has to travel a distance of 7 m to come to a complete stop, the answer is D. 7 m.
To learn more about caboose
https://brainly.com/question/15417833
#SPJ1
3. (a) Determine the voltages V, and Vx using Nodal Analysis. You must
use the node indicated as your reference (REF) for all other node voltages.
(b) Now happily repeat using Mesh Analysis.
Kirchhoff's current law (KCL) can be written at each node using nodal analysis, and the voltages can be expressed in terms of the node voltages using Ohm's law.
What in nodal analysis is a reference node?The most chosen reference node in the nodal analysis is. a node that is connected to by the most elements. a node that has the greatest amount of voltage sources linked to it, or. a symmetry node.
What does a node's reference mean?An order template data node that references another data node is known as a reference node. The structure and data typing of the reference data node match those of the node it is referencing.
To know more about nodal analysis visit:-
https://brainly.com/question/30996611
#SPJ1
The fastest recorded pitch in Nippon Professional Baseball, thrown by Shohei Otani in 2016, was clocked at 102.5 mi/h. If a pitch were thrown horizontally at this speed, how far would the ball fall vertically (in ft) by the time it reached home plate, 60.5 ft away?
Answer & Explanation:
we need to calculate how much the ball drops due to the effect of gravity over the 60.5 ft distance from the pitcher's mound to home plate. We can use the formula:
d = 1/2 x g x t^2
where:
d is the distance the ball drops (in ft)
g is the acceleration due to gravity (32.2 ft/s^2)
t is the time it takes for the ball to travel 60.5 ft at a horizontal speed of 102.5 mi/h (which we need to convert to ft/s)
Converting the horizontal speed from miles per hour to feet per second:
102.5 mi/h = 102.5 x 5280 ft / 3600 s = 150.7 ft/s
Now we can find the time it takes for the ball to travel 60.5 ft:
t = d / v
t = 60.5 ft / 150.7 ft/s
t = 0.401 seconds
Finally, we can use the time to calculate how far the ball drops vertically:
d = 1/2 x g x t^2
d = 1/2 x 32.2 ft/s^2 x (0.401 s)^2
d = 0.517 ft
Therefore, the ball drops vertically by approximately 0.517 ft (or 6.2 inches) by the time it reaches home plate, assuming it is thrown horizontally at 102.5 mi/h.
If a baseball is thrown horizontally at a speed of 102.5 mph, it would fall approximately 2.605 feet vertically by time it reaches the home plate 60.5 feet away.
The subject of this problem belongs to the area of projectile motion. First, we need to know the time it takes for the ball to reach the home plate. Given that the distance to the home plate is 60.5 feet and the ball is thrown at 102.5 mph (which is approximately 150 feet per second when converted), the time can be calculated using the formula
time = distance/speed. This gives us approximately 0.403 seconds.
Next, we use the equation for displacement in the vertical direction under the influence of gravity, h = 0.5gt^2, where g is the acceleration due to gravity (32.2 ft/s^2), and t is time. Plugging in the known values, we get
h = 0.5 * 32.2 * (0.403^2) = 2.605 feet.
Therefore, if a baseball were thrown horizontally at a speed of 102.5 mph, it would drop approximately 2.605 feet vertically by the time it reached the home plate, 60.5 feet away.
Learn more about Projectile Motion here:https://brainly.com/question/29545516
#SPJ2
How does the size of each push compare with the force of friction on the car? Explain your answer in terms of the net force on the car.
Answer:
Explanation:
The size of each push determines the magnitude of the force applied on the car. The force of friction on the car is the resistance force that opposes the motion of the car and it depends on the nature of the surface in contact and the weight of the car. The force of friction is equal and opposite to the force applied on the car, as per Newton's third law of motion.
If the magnitude of the net force on the car is greater than the force of friction, the car will accelerate in the direction of the net force. If the magnitude of the net force is equal to the force of friction, the car will move at a constant velocity. If the magnitude of the net force is less than the force of friction, the car will decelerate and eventually stop.
Therefore, the size of each push needs to be greater than the force of friction on the car to accelerate it. If the size of each push is equal to the force of friction, the car will not accelerate, and if the size of each push is less than the force of friction, the car will decelerate.
a person throws a ball upwards into the air with an initial velocity of 15 m.s-1 ignore the effects of air friction. calculate how long the ball is in the air before it comes back to the hand
Answer:
The objective of this study is to determine the duration of time it takes for an object with an initial velocity of 15 m.s-1 to reach its peak height and descend back to its starting point when launched straight upwards, such as when throwing a ball straight up into the air. The study takes into account the effects of gravity, air resistance and Newton's Laws of Motion.
For the purpose of this study, a mathematical investigation is undertaken, taking into consideration the initial velocity (vi = 15 m.s-1) and the gravitational acceleration (g = 9.81 m.s-2). The equation for the Time of Flight (T) is derived by using kinematic equations, as followed:
T = 2vi/g
Where T is the time of flight and vi is the initial velocity of the object.
In this case, the Time of Flight is equal to T = 2∙ 15m/s / 9.81 m/s2 = 3.03 s.
Therefore, when the ball is released into the air the ball was be in the air for 3.03 seconds before descending back to its starting point.
Friction, in this case, does not need to be included in the equations because it's negligible. However, to accurately determine the time the ball reaches its peak, additional equations should be used by considering the forces acting on the object, being drag, air resistance, and gravity
HELPPPP MEEE
LATE SCIENCE HOMEWORK
Answer: The answer is C i believe
HELPPPPPPPPPP
LATE SCIENCE HOMEWORK
Answer:
motion force
Explanation:
If the catapult throws them then the rocks would be in motions
17. Assertion (A): The internal resistance of a cell is constant. Reason (R): Ionic concentration of the electrolyte remains same during use of a cell.
Assertion (A): The internal resistance of a cell is constant. Reason (R): Ionic concentration of the electrolyte remains same during use of a cell.
Both Assertion (A) and Reason (R) are incorrect.
What is internal resistance?Internal Resistance refers to the opposition in the flow of current which is offered by the cell itself.
The internal resistance of a cell is not constant and can vary depending on many factors such as the age of the cell, the temperature, and the amount of current being drawn from the cell.
The internal resistance tends to increase, as the cell ages which can lead to a decrease in its performance.
In the same manner , the ionic concentration of the electrolyte in a cell can change during use due to the migration of ions between the electrodes and the electrolyte.
Learn more about internal resistance at:
https://brainly.com/question/30531136
#SPJ1
A horizontal spring has spring constant k = 100 N/m. How much work is required to compress it from its uncompressed length (x = 0) to x = 10 cm?
Answer: 0.5J
Explanation:
We can use the formula for the potential energy stored in a spring:
U = (1/2) k x^2
where U is the potential energy, k is the spring constant, and x is the displacement from the equilibrium position.
Since we want to compress the spring, x will be negative, and we need to find the potential energy change between the uncompressed length and a compression of 10 cm:
U = (1/2) k (0.1 m)^2 - (1/2) k (0 m)^2
U = (1/2) (100 N/m) (0.1 m)^2 - (1/2) (100 N/m) (0 m)^2
U = 0.5 J
So the work required to compress the spring from its uncompressed length to x = 10 cm is 0.5 J.
The amount of work required by the spring to compress it from its uncompressed length (x = 0) to x = 10 cm is 0.5 J.
How do you calculate the work required by the spring?In order to compress a spring, the following formula must be used:
Work is equal to (1/2)*k*(xf² - xi²)
where:
xi = starting position = 0 m
xf = final position = 10 cm = 0.1 m k = spring constant = 100 N/m
By entering these values, we obtain:
W = (1/2) * 100 N/m * (0.1 m)² = 0.5 J
Hence, it takes 0.5 J of work to compress the spring from its uncompressed length to x = 10 cm (joules).
To learn more about work done by spring visit:
brainly.com/question/29392391
#SPJ1
formula for calculating a cross sectional area of a cylinder
The formula for calculating the cross-sectional area of a cylinder is:
A = πr^2
The intersection of a cylinder is the area of a shape found if the cylinder is cut perpendicular to its length. This will be a circle for a cylinder. The cross-sectional area of a cylinder is calculated as A = πr^2, where A is the cross-sectional area, is a mathematical constant approximately equal to 3.14, and r is the radius of the cylinder.
This formula computes the volume of a sphere of radius r, which is the cylinder's cross-sectional area. We can calculate various cylinder properties such as thickness, surface area, and so on by knowing the cross-sectional area.
Read more about the Cross-sectional area of a cylinder questions:
https://brainly.com/question/20884503
The formula for calculating the cross-sectional area of a cylinder is Area = πr^2 where 'r' is the radius of the cylinder. An example is provided where the radius is 5 units, yielding a cross-sectional area of 78.5 square units.
Explanation:The cross-sectional area of a cylinder can be calculated using the formula for the area of a circle, because a cross-section of a cylinder is a circle. The formula is Area = πr^2, where 'r' is the radius of the cross-section.
For example, if you have a cylinder with a radius of 5 units, you would calculate the cross-sectional area as follows:
Substitute the radius into the formula: Area = π*5^2.Calculate the square of the radius: Area = π*25.Multiply the result by π (approximately 3.14): Area = 3.14*25 = 78.5 square units.So, the cross-sectional area of this cylinder is 78.5 square units.
Learn more about Cross-sectional Area of a Cylinder here:https://brainly.com/question/31821399
#SPJ2
An airplane A flies north with velocity 300 km/h relative to the ground; Another airplane Bhave a velocity of 200 km/h toward a direction 60° west of north. Find the velocity of A relative to B.
Velocity of airplane A relative to B is 200 km/h east and 126.8 km/h north-west.
What is velocity?Rate and direction of an object's movement is known as velocity.
Let velocity of airplane A with respect to the ground be "vA" and velocity of airplane B with respect to the ground be "vB". Velocity of A relative to B, denoted as vAB, is calculated:
vBx = vB cos(60°) = 200 km/h x cos(60°) = 100 km/h
vBy = vB sin(60°) = 200 km/h x sin(60°) = 173.2 km/h
Direction of vBy is north-west.
Velocity of A with respect to the ground is given as 300 km/h north.
vAB = vA - vB
vABx = vAx - vBx = 300 km/h - 100 km/h = 200 km/h
vABy = vAy - vBy = 300 km/h - 173.2 km/h = 126.8 km/h
So, the velocity of airplane A relative to B is 200 km/h east and 126.8 km/h north-west.
To know more about velocity, refer
https://brainly.com/question/25749514
#SPJ1
A surface or area that is hardened and does NOT allow water to pass through.
Answer:
Impervious surfaces
Explanation:
Impervious surfaces are paved or hardened surfaces that do not allow water to pass through. Roads, rooftops, sidewalks, pools, patios and parking lots are all impervious surfaces.
Use nodal analysis to find V1 and I1 in the circuit shown in Fig. 5.
From the nodal analysis, the value of V1 = -3V and the value of I1 = 2A. Voltage, current, and resistance-related versions of Ohm's law exist in three different forms.
What does the term "super-node" mean?A super-node is a concept that can be utilized to solve a circuit in circuit theory. This is accomplished by treating a voltage source on a wire as a point source voltage in comparison to other point voltages present at different nodes in the circuit, relative to a ground node given a charge of zero or negative.
What does the term "node" mean?In a network of data communication, a node is a point of intersection or connection. These devices are all referred to as nodes in a networked environment where every device is reachable. Depending on the kind of network it relates to, each node has a different definition.
Applying nodal analysis,
[tex]3+\frac{V1}{3} +\frac{V1}{3} +\frac{V1+2}{1} =0[/tex]
[tex]3+\frac{V1}{3} +\frac{V1}{3} +V1+2=0[/tex]
[tex]\frac{V1+V1+3V1}{3} =-5[/tex]
[tex]\frac{5V1}{3} =-5[/tex]
[tex]V1=-3V[/tex]
Applying again nodal analysis,
[tex]I1+\frac{V1}{3} +\frac{V1+2}{1} =0[/tex]
[tex]I1+\frac{-3}{3} +\frac{-3+2}{1} =0[/tex]
[tex]I1=2A[/tex]
To know more about the nodal analysis visit:
brainly.com/question/26099417
#SPJ1
Question 1 (1 point)
Nathaniel needs fewer calories than his dad even though they both exercise about
the same amount. What is the MOST likely reason for this difference?
activity level
age
gender
hunger
The most likely reason for Nathaniel needing fewer calories than his dad, even though they exercise about the same amount, is his age.
What is the reason for this difference?Age plays a significant role in determining person's daily calorie requirements. As people age, their body composition and metabolism change, and they tend to lose muscle mass and gain fat mass, which leads to decrease in their basal metabolic rate (BMR).
BMR is the amount of energy the body needs to carry out its essential functions while at rest. Therefore, even if Nathaniel and his dad have same activity level, Nathaniel's lower BMR due to his age would result in him needing fewer calories than his dad to maintain his weight. Other factors such as gender, activity level, and hunger may also contribute to differences in calorie requirements, but age is the most significant factor in this case.
To know more about exercise, refer
https://brainly.com/question/1365564
#SPJ1
finish this tell me why tell me why
Answer:
Tell me why you cried, and why you lied to me
Tell me why you cried, and why you lied to me
Well I gave you everything I had
But you left me sitting on my own
Did you have to treat me, oh, so bad
All I do is hang my head and moan
Tell me why you cried, and why
Explanation:
How might form and function of a structure influence
each other?
Answer:
Explanation:
Form must follow function, otherwise the design of a structure is a failure. For example, the function (purpose) of a bridge is to provide a means of crossing an obstacle, such as a body of water, a valley, another road, etc. The form of the bridge must serve the purpose of providing safe and reliable passage of pedestrians, vehicles, trains, etc. A most basic form of a bridge is a beam design: simple, efficient, cost-effective, functional. If budget and public sentiment allow, additions to the design can be incorporated to make the bridge more aesthetically pleasing, but such additions do not add to the basic function.
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 3.5 cm
. Two of the particles have a negative charge: q1
= -8.3 nC
and q2
= -16.6 nC
. The remaining particle has a positive charge, q3
= 8.0 nC
. What is the net electric force acting on particle 3 due to particle 1 and particle 2?
Find the net force ΣF⃗ 3
acting on particle 3 due to the presence of the other two particles. Report you answer as a magnitude ΣF3
and a direction θ
measured from the positive x axis.
Therefore, the net electric force acting on particle 3 due to particle 1 and particle 2 is -1.38 x 10⁻⁵ N (repulsive).
What is charge?Charge is a fundamental property of matter that describes how strongly an object interacts with electromagnetic fields, such as electric and magnetic fields. There are two types of charge: positive and negative. Like charges repel each other, while opposite charges attract each other. The SI unit of charge is the Coulomb (C). Charge is conserved, meaning that the total amount of charge in a closed system remains constant over time. Charge can be transferred between objects through various mechanisms, such as friction, conduction, and induction. The movement of charged particles, such as electrons or ions, is the basis for electric current and many other electrical phenomena. The study of electric charge and its effects is known as electrostatics.
Here,
To find the net electric force acting on particle 3 due to particle 1 and particle 2, we can use Coulomb's law, which states that the force between two charged particles is proportional to the product of their charges and inversely proportional to the square of the distance between them:
F = k * (q1 * q3 / r13²) + k * (q2 * q3 / r23²)
where F is the net electric force on particle 3, k is Coulomb's constant (9.0 x 10⁹ N m²/C²), q1, q2, and q3 are the charges of particles 1, 2, and 3, respectively, r13 and r23 are the distances between particles 1 and 3, and particles 2 and 3, respectively.
To find the distances between the particles, we can use the fact that the triangle is equilateral and has sides of length 3.5 cm. By using trigonometry, we can find that the distances are:
r13 = r23 = 3.5 cm
Substituting the values into the equation, we get:
F = (9.0 x 10⁹ N m²/C²) * [(-8.3 nC) * (8.0 nC) / (0.035 m)² + (-16.6 nC) * (8.0 nC) / (0.035 m)²]
F = -1.38 x 10⁻⁵ N (repulsive)
The direction of this force can be found by considering the angles between the sides of the equilateral triangle and using vector addition. The direction is 120 degrees counterclockwise from the positive x-axis.
To know more about charge,
https://brainly.com/question/30163160
#SPJ9