the earth is approximately 8000 miles in diameter. i'm riding in a hot air balloon 1.5 miles above the surface of the earth. approximately how far away is the horizon?

Answers

Answer 1

The horizon is approximately 3,474 miles away when viewed from 1.5 miles above the surface of the Earth.

Calculation: The radius of the Earth is 4,000 miles, so the circumference of the Earth is 8,000 miles (2pir). The distance to the horizon is the circumference divided by 2pi, or 8,000 miles / 2pi = 3,474 miles.

The horizon is approximately 1.32 × √ (h) miles away, where h is the height of the observer above the surface of the Earth. Given the Earth's diameter, an observer in a hot air balloon at 1.5 miles above the surface of the Earth would be approximately 1.32 × √ (1.5) miles from the horizon.

The calculation is done as follows.1.32 × √ (1.5) miles= 1.32 × √ (1.5) miles = 1.32 × 1.22 miles= 1.61 miles So, an observer in a hot air balloon 1.5 miles above the surface of the Earth would be approximately 1.61 miles away from the horizon.

You can read more about radius of the Earth at https://brainly.com/question/22719331

#SPJ11


Related Questions

a satellite is orbiting the earth at an altitude of 744 km above the surface of earth. what is the acceleration due to gravity in m/s2 at that altitude?

Answers

The acceleration due to gravity in m/s² at that altitude of 744 km is 9.797.

To find out what the acceleration due to gravity is in m/s² at an altitude of 744 km above the surface of earth, use the formula `g = Gm/r²`.

Given,The altitude of the satellite, h = 744 km,The radius of the earth, r = 6371 km, Formula for acceleration due to gravity:

g = Gm/r²

Here, the value of G, the universal gravitational constant, is 6.67 x 10^-11 Nm²/kg².Mass of the Earth, m = 5.97 x 10^24 kg.Let's calculate the radius of the orbit, R.Radius of the orbit = r + h= 6371 + 744 = 7115 km = 7.115 x 10^6 m.So, we have,

g = Gm/R²= 6.67 x 10^-11 x 5.97 x 10^24 / (7.115 x 10^6)²= 9.797 m/s².Therefore, the acceleration due to gravity in m/s² at that altitude is 9.797.

More on acceleration: https://brainly.com/question/21975712

#SPJ11

europa, one of the moons of jupiter, was discovered by galileo in 1610. europa has a circular orbit of radius 6.708 105 km and period 3.551 days. find the mass of jupiter.

Answers

Therefore, the mass of Jupiter is approximately 1.898 × 1027 kg.

The mass of Jupiter can be calculated using the equation M = (4π2 r3)/(G P2), where M is the mass of Jupiter, r is the orbital radius of Europa (6.708 105 km), G is the gravitational constant (6.674 × 10-11 m3 kg-1 s-2), and P is the orbital period of Europa (3.551 days).

The circular orbit of Europa is given as, r = 6.708 × 105 km. The period of Europa is given as, T = 3.551 days are supposed to calculate the mass of Jupiter. In order to calculate the mass of Jupiter, we need to use Kepler's 3rd law. Kepler's 3rd law is given as, T2 = (4π2/GM) × r3 where T is the period of orbit, G is the gravitational constant, M is the mass of the planet, and r is the radius of the orbit.

By rearranging the above formula we get, M = (4π2r3) / (GT2)Substituting the given values, we get, M = (4π2 × (6.708 × 105)3) / ((6.67430 × 10-11) × (3.551 × 24 × 60 × 60)2) ≈ 1.898 × 1027 kg. Therefore, the mass of Jupiter is approximately 1.898 × 1027 kg.

You can read more about Jupiter at https://brainly.com/question/2715802#:

#SPJ11

how much work is done lifting a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot

Answers

The amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

In order to solve the problem, we can use the formula W = Fd. where, W is the work done, F is the force required and d is the distance covered by the object while being lifted or moved.

So, we have to first calculate the force required to lift the object. Let us assume the force required is F, then

F =  weight of object + weight of cable

F = 15 + 2 * 30

F = 75 pounds

Therefore, the force required to lift the object is 75 pounds. Now, we can calculate the work done as follows:

W= Fd

W = 75 * 14

W = 1050 foot-pounds

Therefore, the amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

Learn more about work of move at https://brainly.com/question/28356414

#SPJ11

Research Galileo's work on falling bodies What did he wanted to demonstrate?What arguments did he use to prove that he was right?did be used experiments logic finding of other scientists or other approaches

Answers

Galileo Galilei conducted experiments on falling bodies to demonstrate that the rate of fall is independent of an object's mass.  Galileo argued that if heavier objects did indeed fall faster, then two objects of different masses tied together would fall at an intermediate speed, which he found was not the case.

He used various methods to prove his point, including rolling balls down inclined planes, dropping weights from towers, and measuring the times of fall. He also used logic and mathematical reasoning to support his conclusions. Galileo's work marked a significant shift from traditional Aristotelian physics to the empirical approach of modern science.

To know more about modern science, here

brainly.com/question/30252960

#SPJ4

at a particular instant, a hot air balloon is 210 m in the air and descending at a constant speed of 3.5 m/s. at this exact instant, a girl throws a ball horizontally, relative to herself, with an initial speed of 21 m/s. when she lands, where will she find the ball? ignore air resistance. (find the distance, in meters, from the girl to the ball.)

Answers

The ball which is thrown with a speed of 21 m/s, travels a distance of 129.99 m in the horizontal direction.

Therefore, the vertical component of the ball's motion will be determined by the force of gravity and the initial vertical speed of the balloon.

We can use the following kinematic equation to determine how long it takes for the ball to fall to the ground:

h = ut + 1/2 * g * t^2

where h is the initial height of the ball (equal to the height of the balloon which is 210 m).

u is the initial velocity of the ball in the vertical direction which is 3.5 m/s.

g is the acceleration due to gravity (approximately 9.8 m/s^2),

and t is the time it takes for the ball to fall to the ground.

Plugging in the values we know, we get:

210 = 3.5 * t + 1/2 * 9.8 * t^2

4.9 t^2 + 3.5 t - 210 = 0

t = 6.19 seconds

Now we can use the time it takes for the ball to fall to the ground to determine how far it travels horizontally, given its initial horizontal velocity of 21 m/s. We can use the following equation:

d = v * t

where d is the horizontal distance traveled by the ball, v is its initial horizontal velocity, and t is the time it takes to fall to the ground (which we just calculated).

Plugging in the values we know, we get:

d = 21 * 6.19

d ≈ 129.99 meters

Therefore, the girl will find the ball approximately at a distance of 129.99 meters away from her when she lands after throwing the ball horizontally.

Learn more about the kinematic equation:

https://brainly.com/question/28712225

#SPJ11

you have two flat metal plates, each of area 2.00 m2, with which to construct a parallel-plate capacitor. if the capacitance of the device is to be 1.00 f, what must be the separation between the plates?

Answers

The capacitance of the device is to be 1.00 f, the separation distance between the plates is 1.77 × 10⁻¹³ m.

We have two flat metal plates of area 2.00 m² each with which to construct a parallel-plate capacitor. If the capacitance of the device is to be 1.00 F

Given:

Area of each plate = 2.00 m²

Capacitance of the device = 1.00 F

We know that the capacitance of a parallel-plate capacitor is given by:

C = εA/d

Where C is the capacitance of the parallel plate capacitor, ε is the permittivity of the material between the plates, A is the area of the plate, and d is the separation distance between the plates.

Rearranging this equation we get:

d = εA/C

Now, to find the separation distance, we need to know the permittivity of the material between the plates. The permittivity of a vacuum is 8.85 × 10⁻¹² F/m.

Since the question doesn't specify the permittivity of the material between the plates, we will assume it to be a vacuum. So,

ε = 8.85 × 10⁻¹² F/m²

Substituting the values of ε, A, and C, we get:

d = εA/C= (8.85 × 10⁻¹² F/m²) × (2.00 m²) / (1.00 F)

= 17.7 × 10⁻¹² m²/F /F= 17.7 × 10⁻¹² m

= 1.77 × 10⁻¹³ m

Therefore, the separation distance between the plates is 1.77 × 10⁻¹³ m.

For more such questions on distance , Visit:

https://brainly.com/question/26550516

#SPJ11

when the resistors are connected in 2 loops (first circuit of the video) the current through the resistors are 1 ma and 10ma. what is the current in the circuit before the junction that splits to the 2 resistors?

Answers

The circuit's initial current via the junction where the two resistors are separated is 11 mA. The current divides and simultaneously passes via both resistors in a paralleled resistor circuit using two resistors.

A battery and many capacitors are linked in series. The capacitors have a comparable amount of charge.

A battery and many capacitors are linked in series. The sum of the potential differences between each capacitor equals the current battery emf.

When two resistors having resistance R that are similar to one another are linked in series, the capacitive reactance is 2R.

Both negative and positive ions move charges whenever an electricity flows through with an ionic liquid like salty water. Energy is measured in electron-volts.

To know more about current click here

brainly.com/question/30832987

#SPJ4

a long, straight wire carries a current of 8.60 a. an electron is traveling in the vicinity of the wire. at the instant when the electron is 4.50 cm from the wire and traveling at a speed of 6.00 * 104 m>s directly toward the wire, what are the magnitude and direction (relative to the direction of the current) of the force that the magnetic field of the current exerts on the electron?

Answers

The magnitude and direction of the force that the magnetic field of the current exerts on the electron in a a long, straight wire is 1.96 x 10⁻¹⁸ N and direction of the force is opposite to the direction of the current.

The magnetic field of the current exerts a force on the electron of magnitude 6.072 x 10⁻¹³ N in a direction that is opposite to the direction of the current.

where

Current, I = 8.60 A

Distance of electron from wire, r = 4.50 cm = 0.045 m

Velocity of electron, v = 6.00 x 10^4 m/s

The force on the electron due to magnetic field of current-carrying wire is given by:

F = (μ * I * q) / (2 * π * r)

where μ is the magnetic permeability of free space and is equal to 4π x 10⁻⁷ Tm/A,

q is the charge of electron and is equal to -1.6 x 10⁻¹⁹ C, and

r is the distance between the electron and the wire.

Substituting the values, we get:

F = (4π x 10⁻⁷ Tm/A) * (8.60 A) * (-1.6 x 10⁻¹⁹ C) / (2 * π * 0.045 m)

F = -1.96 x 10⁻¹⁸ N.

The negative sign indicates that the direction of force is opposite to the direction of the current.

So, the magnitude of the force exerted by the magnetic field on the electron is 1.96 x 10⁻¹⁸ N, and the direction of the force is opposite to the direction of the current.

To practice more questions about the 'magnetic field':

https://brainly.com/question/26257705

#SPJ11

water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. the density of water is 1 000 kg/m3. determine its average velocity. multiple choice question. 20 m/s 200 m/s 0.02 m/s 2 m/s 0.2 m/s

Answers

Option D: 2 m/s is the average velocity of the water flowing through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s.

According to the question:

cross-sectional area of the pipe = 0.002m²

Mass flowrate = 4 kg/s

Density of water = 1000 kg/m³

We are asked to find, average velocity =?

Average velocity is the net or total displacement covered by a body in a given time. The mass flow rate divided by the pipe's cross-sectional area and density ratio is the formula for calculating a fluid's average velocity.

As a result, the water's average flow rate through the pipe is provided by:

v = m / (ρ × A)

where, v is the average velocity, m is the mass flow rate, ρ is the density of water, and A is the cross-sectional area of the pipe. Substituting the values in the above equation we get:

v = 4 / (1000 × 0.002)

v = 2m/s

Therefore, the average velocity of water flowing through a pipe of cross-sectional area of 0.002m² is 2m/s.

To know more about average velocity, refer:

https://brainly.com/question/13243044

#SPJ4

Correct question is:

Water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. The density of water is 1 000 kg/m3. Determine its average velocity. Multiple choice question.

20 m/s

200 m/s

0.02 m/s

2 m/s

0.2 m/s

In the formula v = f X, what measurement is used for the frequency of the wavelength?​

Answers

v = fλ links the velocity, frequency, and wavelength of a wave and is used to compute one of these parameters if the other two are known.

What unit of measurement is the wavelength's frequency?

The wavelength formula shows the wavelength in metres. The v represents wave velocity and is measured in metres per second (mps). In addition, the letter "f" stands for frequency, which is expressed in hertz (Hz).

Which of the following best describes the wavelength measuring unit?

The term wavelength implies that it measures length. Its measurements are often expressed in length measurements or metric units. In other words, wavelengths can be expressed in their SI units, metres.

To know more about frequency visit:-

https://brainly.com/question/12053539

#SPJ1

a car starts from rest and moves around a circular track of radius 47.0 m. its speed increases at the constant rate of 0.600 m/s2. (a) what is the magnitude of its net linear acceleration 15.0 s later?

Answers

The magnitude of the net linear acceleration of the car 15.0 seconds later is 5.08 m/s2. This is because acceleration is the rate of change of velocity, and the car's velocity is increasing at a constant rate of 0.600 m/s2.

To calculate the magnitude of the net linear acceleration, we must use the equation a = v2/r, where a is the acceleration, v is the velocity, and r is the radius of the circular track. Since the velocity of the car is increasing at a constant rate of 0.600 m/s2, we can calculate the velocity of the car after 15.0 seconds using the equation v = v0 + at, where v0 is the initial velocity (0 m/s in this case), a is the acceleration (0.600 m/s2), and t is the time (15.0 seconds).
Thus, the velocity of the car after 15.0 seconds is 9.00 m/s. Now, we can plug this velocity, along with the radius of the circular track (47.0 m), into the equation a = v2/r to calculate the magnitude of the net linear acceleration:
a = (9.00 m/s)2/47.0 m = 5.08 m/s2

Therefore, the magnitude of the net linear acceleration of the car 15.0 seconds later is 5.08 m/s2.

For more such questions on Linear acceleration.

https://brainly.com/question/12996537#

#SPJ11

over the course of a half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. what is the parallax angle (p) in this case?\

Answers

Over the course of half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. The parallax angle in this case is: 0.400''

Given that the relative position of the sample star as seen from earth is seen to change by 0.400'' over the course of half of a year. We are to determine the parallax angle in this case. Parallax angle (p) can be defined as the angle between the baseline and the line of sight to the star. It is the angle between two lines drawn from the star to the Earth, separated by six months, and viewed at a right angle to the baseline.

It is measured in seconds of arc (or arcseconds), and it is usually too small to measure directly. The parallax angle can be calculated using the formula below: parallax angle (p) = (d/b)

where d is the distance from the Earth to the star and b is the baseline, which is half of the distance that the Earth moves in its orbit over six months, which is equal to 1 astronomical unit (AU).

Thus, using the given values, we can calculate the parallax angle as follows: [tex]p = (d/b) = (0.400/1) = 0.400''[/tex]

Thus, the parallax angle, in this case, is 0.400'' (arcseconds). Therefore, the relative position of a star as seen from Earth changes with the change in the Earth's position. The change in position helps to determine the distance from the Earth to the star using the parallax angle.

To know more about parallax angles refer here:

https://brainly.com/question/20296211#

#SPJ11

a material has temperature coefficient of resistance (alpha) of 3.9 x 10^-3. if the material has a resistance of 23 ohms at a temperature of 20 c, what is the resistance of this material at a temperature of 50 c?

Answers

The resistance of the material at a temperature of 50°C is approximately 25.791 Ω.

We can use the formula for temperature dependence of resistance to solve this problem:

R2 = R1 [1 + α(T2 - T1)]

where R1 is the resistance at temperature T1, R2 is the resistance at temperature T2, and α is the temperature coefficient of resistance.

Plugging in the given values, we get:

R2 = 23 Ω [1 + (3.9 x 10⁻³/°C)(50°C - 20°C)]

Simplifying, we get:

R2 = 23 Ω [1 + (3.9 x 10^-3/°C)(30°C)]

R2 = 23 Ω [1 + 0.117]

R2 = 23 Ω [1.117]

R2 = 25.791 Ω

Therefore, the resistance of the material is approximately 25.791 Ω.

Learn more about Resistance:

#SPJ11

a 10.0-mf capacitor is fully charged across a 12.0-v bat- tery. the capacitor is then disconnected from the battery and connected across an initially uncharged capacitor with capacitance c. the resulting voltage across each capacitor is 3.00 v. what is the value of c?

Answers

The value of  uncharged capacitor in series with a 10.0-microfarad capacitor, given that each capacitor has a voltage of 3.00 volts, can be calculated using the formula for equivalent capacitance in series and  formula for charge on a capacitor. The value of c is approximately 4.00 microfarads.

To determine the value of c, which is [tex]1/Ceq = 1/C1 + 1/C2[/tex] . Initially, the 10.0-microfarad capacitor has a charge of [tex]Q = CV = (10.0 * 10^{-6 }F) * 12.0 V = 1.20 * 10^{-4} C[/tex].

When it is connected in series with uncharged capacitor with capacitance c,  charge is shared between the two capacitors. The charge on  10.0-microfarad capacitor is also equal to the charge on  uncharged capacitor, which is given by [tex]Q = (3.00 V) * C[/tex] .

Equating the two expressions for Q and solving for c, we get [tex]C = Q/3.00[/tex] [tex]V = (1.20 * 10^{-4 C}) / (3.00 V) = 4.00 * 10^{-5 F}[/tex]. Therefore,  value of c is approximately 4.00 microfarads.

To know more about equivalent capacitance, here

brainly.com/question/30905469

#SPJ4

the plane is flying at 800 miles per hour. how far will the package travel horizontally during its descent?

Answers

The distance that a package will travel horizontally during its descent when a plane is flying at 800 miles per hour can be calculated using the following steps is 1600 miles.

What is the distance?

Determine the time taken for the package to hit the ground. We know that when an object is dropped from a certain height, it falls under the influence of gravity.

The acceleration due to gravity is 9.8 m/s². The formula for the time taken for an object to fall can be given by:

t = √(2h/g)

where, t is the time taken for the object to fall is the height from which the object was dropped g is the acceleration due to gravity.

We know that the distance traveled by the package horizontally can be given by d = vt

where, d is the distance traveled horizontally by the package v is the velocity of the planet is the time taken for the package to hit the ground.

Thus, the distance is 1600 miles.

Read more about Distance here:

https://brainly.com/question/15172156

#SPJ11

your car is accelerating to the right from a stop.for the steps and strategies involved in solving a similar problem, you may view a

Answers

To solve the given problem, it is important to understand the concept of acceleration and the forces acting on the car. The acceleration of a car is the rate at which its velocity changes over time.

The forces acting on the car can be divided into two components: the force of friction between the tires and the road, and the force of gravity acting on the car.

The force of friction depends on the nature of the road surface and the type of tires on the car. The force of gravity depends on the mass of the car and the gravitational acceleration.

It is given that the car is accelerating to the right from a stop. This means that the car is moving in the positive x-direction with an increasing velocity.Identify the forces acting on the car: The forces acting on the car are the force of friction and the force of gravity. The force of friction is acting in the opposite direction to the motion of the car and is given by f = μN, where μ is the coefficient of friction and N is the normal force acting on the car. The force of gravity is acting in the downward direction and is given by Fg = mg, where m is the mass of the car and g is the gravitational acceleration.Analyze the motion of the car using the concepts of force and acceleration. The net force acting on the car is given by Fnet = ma, where a is the acceleration of the car. From Newton's second law, we can write Fnet = f - Fg = ma. Solving for a, we get a = (f - Fg)/m.Calculate the acceleration of the car by substituting the values of f, Fg, and m in the above equation, we get a = (μN - mg)/m. The normal force acting on the car is equal to the weight of the car, which is given by N = mg. Substituting this value in the above equation, we get a = (μ - g)/m. This is the expression for the acceleration of the car.

Therefore, a = (μ - g)/m is the expression for the acceleration of the car.

To know more about acceleration click here:

https://brainly.com/question/30660316

#SPJ11

calculate the work done on the block by the spring during the motion of the block from its initial position to where the spring has returned to its uncompressed length.

Answers

The work done on the block by the spring during its move from its initial position to where the spring has returned to its uncompressed length is[tex]W = (1/2) \times k \times x^2[/tex].

We need to know the spring constant (k) and the displacement of the block (x) from its initial position to the position where the spring has returned to its uncompressed length. We can use the formula:

W = (1/2) * k * x^2

where W is the work done on the block, k is the spring constant, and x is the displacement of the block.

This formula is derived from the potential energy stored in the spring, which is given by:

U = (1/2) * k * x^2

where U is the potential energy stored in the spring.

When the block is initially at rest, the spring is compressed, and it has potential energy given by U = - (1/2) * k * x^2, where x is the initial compression of the spring.

Note that the negative sign indicates that the work done by the spring is negative, which means that the spring is doing work on the block in the opposite direction to the displacement of the block. This is because the spring force is always directed opposite to the displacement of the block.

As the block is released, the spring begins to push it back to its uncompressed length, and the block begins to move.

The work done on the block by the spring is equal to the change in potential energy of the spring, which is given by:

W = U_final - U_initial

Since the final position of the block is where the spring has returned to its uncompressed length, the final potential energy of the spring is zero. Therefore, the work done on the block by the spring is:

W = U_initial

Substituting the initial potential energy of the spring into this equation, we get:

W = (1/2) * k * x^2

Therefore, the work done on the block by the spring during its move from its initial position to where the spring has returned to its uncompressed length is given by the formula:

W = (1/2) * k * x^2

Learn more about spring:

https://brainly.com/question/14670501

#SPJ11

at what angle is the first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm?

Answers

The first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm is approximately 6.2°.


The angle of the first-order maximum refers to the angle at which the brightest interference pattern appears on a screen placed behind two closely spaced slits when illuminated with the blue light of 450-nm wavelength.

The angle is determined by the equation:

theta_m = (m*lambda)/d

where m is the order, lambda is the wavelength, and d is the slit separation.
theta_m = (1*450E-9 m)/0.0500 mm
theta_m = 6.2°

Thus, the first-order maximum for double slits of 0.0500 mm at 450 nm λ blue light is around 6.2°.

To know more about  first-order maximum click here:

https://brainly.com/question/14703717

#SPJ11

the electric field 0.300 m from a very long uniform line of charge is 850 n/c . part a how much charge is contained in a section of the line of length 1.70 cm ? express your answer in coulombs.

Answers

The charge in the section of the line of length 1.70 cm is:$$Q = (1.70 × 10⁻² m) * (2.16 × 10⁻⁵ C/m) = 1.277 × 10⁻⁷ C

The electric field 0.300 m from a very long uniform line of charge is 850 n/c. How much charge is contained in a section of the line of length 1.70 cm? The answer is 1.277 × 10⁻⁷ C. Explanation: To begin, let's consider the electric field due to an infinite line of charge. The electric field generated by a uniformly charged infinite line of charge is given by:$$E = \frac{λ}{2πεr}$$where, E is the electric field, λ is the linear charge density (charge per unit length), r is the distance from the wire, and ε is the permittivity of free space. To begin with, we can rearrange the equation for electric field:$$λ=\frac{2πεrE}{l}$$Where, l is the length of the line section of interest, E is the electric field at the distance r from the line of charge, and λ is the linear charge density. Now we can plug in the given values:$$(1.70 cm)λ = Q$$$$λ=\frac{2πεrE}{l}$$λ = (2π * 8.85 × 10⁻¹² F/m) * (0.300 m) * (850 N/C) / (0.0170 m)λ = 2.16 × 10⁻⁵ C/mSo, the charge in the section of the line of length 1.70 cm is:$$Q = (1.70 × 10⁻² m) * (2.16 × 10⁻⁵ C/m) = 1.277 × 10⁻⁷ C$$Therefore, 1.277 × 10⁻⁷ C.

Learn more about Charge line of length

brainly.com/question/14433096

#SPJ11

Why is momentum not conserved in real life situations

Answers

Momentum is not always conserved in real-life situations because external forces can act on a system and change its momentum.

For example, when two cars collide, friction and air resistance can cause the momentum of the system to change. Similarly, when a ball is thrown in the air, gravity and air resistance act on it and cause its momentum to change. Other factors such as deformation, energy loss, and imperfect collisions can also cause momentum to be lost or gained. Therefore, while momentum is a useful concept in physics, it is important to consider the impact of external factors when analyzing real-world situations.

To know more about momentum, here

brainly.com/question/30677308
#SPJ4

Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Drag and drop each item into
the correct column. Order does not matter.
Conductor or Insulator
:: aluminum foil
:: plastic :: ocean water
:: air
:: wood
:: soil
:: foam
glass

Answers

Conductor:

Aluminum foil

Insulator:

Plastic

Air

Wood

Soil

Foam

Glass

What is Conductor?

A conductor is a material or substance that allows electric charge to flow freely through it, offering little or no resistance to the flow of an electric current. Common conductors include metals such as copper, silver, and gold.

A conductor is a material or substance that allows electrical current to flow freely through it. This is due to the presence of free electrons that can move easily through the material when an electric field is applied. Common conductors include metals such as copper, silver, and aluminum.

In contrast, an insulator is a material or substance that does not allow electrical current to flow through it easily. Insulators have very few free electrons and resist the flow of electric current. Common insulators include rubber, plastic, glass, and air.

Learn more about Conductor from given link

https://brainly.com/question/24154868

#SPJ1

a rear window defroster consists of a long, flat wire bonded to the inside surface of the window. when current passes through the wire, it heats up and melts ice and snow on the window. for one window the wire has a total length of 11.0 m , a width of 1.8 mm , and a thickness of 0.11 mm . the wire is connected to the car's 12.0 v battery and draws 7.5 a . part a what is the resistivity of the wire material? express your answer with the appropriate units.

Answers

The resistivity of the wire material can be calculated using Ohm's Law, which states that V=IR, or voltage = current multiplied by resistance. Therefore, the resistivity of the wire material is [tex]2.87 \times 10^{-8} \Omega m[/tex].

Resistivity of wire is given as ρ=RA/L where R is the resistance of wire, A is the cross-sectional area of the wire, L is the length of the wire.

The formula to calculate the resistance of wire from Ohm's Law is given by R=V/I where V is the voltage, I is the current.

Substituting the given values: V = 12.0 V, I = 7.5 A.

Therefore, R=V/I=12.0 / 7.5 = 1.6 Ω

From the formula of resistivity:

[tex]\rho=\dfrac{RA}{L}\\R=\dfrac{ρL}{A}[/tex]

Substituting the given values: R = 1.6 Ω, L = 11.0 m and calculating the area:

[tex]A = (1.8 \times 10^{-3} m) (0.11 \times 10^{-3} m)\\ = 0.198 \times 10^{-6} m²[/tex]

Therefore,

[tex]\rho = RA/L\\= \dfrac{R \times A}{ L}\\= \frac{1.6 \times 0.198 \times 10^{-6}}{ 11.0}\\ = 2.87 \times 10^{-8 } \Omega m[/tex]

Therefore, the resistivity of the wire material is [tex]2.87 \times 10^{-8 } \Omega m[/tex].

For more details on resistivity, click on the below link:

https://brainly.com/question/30799966

#SPJ11

which will have a larger velocity upon hitting the ground: a rock thrown vertically upward from a bridge, or a rock thrown vertically downward from the same bridge? assume both rocks are thrown from the same height and with the same speed.

Answers

Assuming both rocks are thrown from the same height and with the same initial speed, the rock thrown vertically downward will have a larger velocity upon hitting the ground than the rock thrown vertically upward.

This is because the rock thrown upward will lose speed as it moves against the force of gravity. Eventually, the upward motion will be slowed down until the rock reaches the highest point in its trajectory, where it momentarily stops and changes direction. From that point, the rock will accelerate downward, gaining speed as it falls back to the ground. However, the time spent traveling upward and the time spent traveling downward will not be the same, since the upward portion of the trajectory will be slower due to gravity slowing the rock's ascent. This means that the rock thrown upward will have a lower speed when it hits the ground compared to the rock thrown downward.

On the other hand, the rock thrown downward will experience the force of gravity pulling it towards the ground, causing it to accelerate and gain speed as it falls. Since it is initially moving downward, it will not slow down until it hits the ground, meaning that it will have a higher velocity upon impact than the rock thrown upward.

Learn more about force of gravity here: https://brainly.com/question/2537310.

#SPJ11

A boy on a 1.9 kg skateboard initially at rest
tosses a(n) 8.0 kg jug of water in the forward
direction.
If the jug has a speed of 2.7 m/s relative to
the ground and the boy and skateboard move
in the opposite direction at 0.65 m/s, find the
boy’s mass.
Answer in units of kg.

Answers

Answer:

Approximately [tex]31.3\; {\rm kg}[/tex]. (Assuming the friction between the skateboard and the ground is negligible.)

Explanation:

The momentum [tex]p[/tex] of an object of [tex]m[/tex] and velocity [tex]v[/tex] is:

[tex]p = m\, v[/tex].

When the boy tossed the jug of water, the change in the momentum of the jug would be:

[tex]\Delta p(\text{jug}) = m(\text{jug}) \, (v(\text{jug}) - u(\text{jug}))[/tex], where:

[tex]m(\text{jug}) = 8.0\; {\rm kg}[/tex] is the mass of the jug;[tex]v(\text{jug}) = 2.7\; {\rm m\cdot s^{-1}}[/tex] is the velocity of the jug after the toss;[tex]u(\text{jug}) = 0\; {\rm m\cdot s^{-1}}[/tex] is the initial velocity of the jug, which was at rest before the toss.

Hence:

[tex]\begin{aligned}\Delta p(\text{jug}) &= m(\text{jug}) \, (v(\text{jug}) - u(\text{jug})) \\ &= (8.0)\, (2.7 - 0)\; {\rm kg\cdot m\cdot s^{-1}} \\ &= 21.6\; {\rm kg\cdot m\cdot s^{-1}}\end{aligned}[/tex].

Similarly, the change in the momentum of the skateboard would be:

[tex]\Delta p(\text{board}) = m(\text{board}) \, (v(\text{board}) - u(\text{board}))[/tex], where:

[tex]m(\text{board}) = 1.9\; {\rm kg}[/tex] is the mass of the board;[tex]v(\text{board}) =(-0.65)\; {\rm m\cdot s^{-1}}[/tex] is the velocity of the board after the toss;[tex]u(\text{board}) = 0\; {\rm m\cdot s^{-1}}[/tex] is the initial velocity of the board.

Note that the velocity of the board [tex]v(\text{board})\![/tex] after the toss is opposite to that of the jug. The sign of [tex]v(\text{board})[/tex] would be opposite to that of [tex]v(\text{jug})[/tex]. Since [tex]v(\text{jug})\![/tex] is positive, the value of [tex]v(\text{board})\!\![/tex] should be negative.

[tex]\begin{aligned}\Delta p(\text{board}) &= m(\text{board}) \, (v(\text{board}) - u(\text{board})) \\ &= (1.9)\, ((-0.65)- 0)\; {\rm kg\cdot m\cdot s^{-1}} \\ &= (-1.235)\; {\rm kg\cdot m\cdot s^{-1}}\end{aligned}[/tex].

Let [tex]m(\text{boy})[/tex] denote the mass of the boy. The velocity of the boy was initially [tex]u(\text{boy}) = 0\; {\rm m\cdot s^{-1}}[/tex] and would become [tex]v(\text{boy}) =(-0.65)\; {\rm m\cdot s^{-1}}[/tex] after the toss. The change in the velocity of the boy would be:

[tex]\Delta p(\text{boy}) = m(\text{boy}) \, (v(\text{boy}) - u(\text{boy}))[/tex].

Under the assumptions, the total changes in the momentum of this system (the boy, the skateboard, and the jug) should be [tex]0[/tex]. Thus:

[tex]\Delta p(\text{boy}) + \Delta p(\text{boy}) + \Delta p(\text{jug}) = 0[/tex].

Rearrange and solve for the mass of the boy:

[tex]\Delta p(\text{boy}) = -\Delta p(\text{jug}) - \Delta p(\text{board})[/tex].

[tex]\begin{aligned} m(\text{boy}) &= \frac{-\Delta p(\text{jug}) - \Delta p(\text{board})}{v(\text{boy}) - u(\text{boy})} \\ &= \frac{-(21.6) - (-1.235)}{(-0.65) - 0}\; {\rm kg} \\ &\approx 31.3\; {\rm kg}\end{aligned}[/tex].

which satellite channel measures the temperature of the underlying surfaces (i.e., clouds, ocean, land)? group of answer choices visible infrared water vapor

Answers

Visible Infrared (IR) satellite channels measure the temperature of underlying surfaces. This includes clouds, oceans, and land.

IR channels work by detecting the amount of infrared radiation emitted from the Earth's surface. The intensity of the radiation is then converted into a digital number, which is displayed as a color on a satellite image. The higher the digital number, the warmer the surface temperature. This data can then be used to track changes in temperatures over time. The satellite channel that measures the temperature of the underlying surfaces is visible infrared. The surface temperature measurement is made possible by the difference in temperatures of objects in the infrared spectrum. An object's temperature and the level of radiation it emits have a direct correlation, and this is what visible infrared satellites use to take the temperature of the underlying surfaces. The visible infrared (VI) channel is used to estimate cloud cover and surface temperature. Infrared radiation from the surface of the earth is detected in this channel. The temperature of clouds, oceans, and land can be estimated using the visible infrared (VI) channel. It also provides data on how temperature changes with latitude and over time. Furthermore, the VI channel aids in the identification of cold and hot surfaces. Water vapor (WV) is another channel utilized in satellite imagery to observe the atmosphere's water vapor content. It enables meteorologists to forecast the occurrence of rainfall and other weather patterns. In general, satellite measurements assist in understanding Earth's weather and its impact on humans and the environment. These satellites help scientists to forecast severe weather, monitor weather changes over time, and analyze natural disasters. In addition, they assist in tracking the effects of climate change on the planet.

For more such questions on Satellites.

https://brainly.com/question/15168838#

#SPJ11

two identical carts, both of mass 0.5 kg are moving towards each other, each with a speed of 1.5 m/s. after they collide, what will be their velocities?

Answers

After the collision, the first cart moves to the left with a velocity of -1.5 m/s and the second cart moves to the right with a velocity of 1.5 m/s.

The velocities of the two carts after collision can be determined using the conservation of momentum principle. Momentum is defined as the product of an object's mass and velocity. Given,Mass of each cart, m = 0.5 kg, Initial velocity of each cart, u = 1.5 m/s, Initial momentum of each cart, p = mu.

After collision, velocity of the carts = v. Using the law of conservation of momentum;

mu + mu = mv + mv⇒ 2mu = 2mv⇒ u = v

Momentum before collision = Momentum after collision (conservation of momentum)

∴ 0.5 × 1.5 + 0.5 × (-1.5) = 0.5v1 + 0.5v2

On solving, we get,v1 = -1.5 m/sv2 = 1.5 m/s

Therefore after the collision, the first cart moves to the left with a velocity of -1.5 m/s and the second cart moves to the right with a velocity of 1.5 m/s.

More on velocity: https://brainly.com/question/30470329

#SPJ11

if a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 a.m. and then gets on the first train that arrives, what proportion of time does he or she go to destination a?

Answers

The probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.

The uniform distribution is a type of probability distribution where all outcomes are equally likely. In this case, the passenger arrives at the station at a time that is uniformly distributed between 7 and 8 a.m. Therefore, the probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.
In other words, the probability that the passenger will go to destination A is 1/2. This is because the probability that they will arrive between 7 and 8 a.m. and get on the first train that arrives is the same as the probability that they will arrive between 7 and 8 a.m., which is 1/2.

Therefore, the proportion of time the passenger goes to destination A is 1/2. This is because the probability of them getting on the first train that arrives is the same as the probability of them arriving between 7 and 8 a.m., which is 1/2.

For more such questions on Probability distribution.

https://brainly.com/question/14210034#

#SPJ11

solar energy is also known as . group of answer choices convection longwave energy power conduction insolation

Answers

The correct answer is that solar energy is also known as isolation.

Solar energy, also known as insolation, is energy that is harnessed from the sun's rays. It is the most direct form of energy and can be used in a variety of ways, from heating and cooling to electricity generation. Solar energy is a renewable source of energy, meaning it is available in unlimited quantities and will never run out.


Solar energy is harnessed through various means, such as photovoltaic cells, thermal collectors, and concentrated solar power systems. Photovoltaic cells absorb the sun's energy and convert it into electricity, while thermal collectors use the sun's heat to provide hot water and air for heating. Concentrated solar power systems use mirrors to concentrate the sun's energy and produce electricity.


Solar energy is an efficient and clean source of energy, with minimal environmental impact. It does not produce any harmful emissions, making it a much more eco-friendly energy source than fossil fuels. Solar energy can also be used to power small devices, such as calculators and flashlights, making it a versatile energy source.

Therefore, the correct answer is isolation.

To know more about solar energy, refer here:

https://brainly.com/question/9704099#

#SPJ4

if each charge has two field lines per unit of charge (q), what is the ratio of the total positive (red) charge to the total negative (blue) charge?

Answers

The ratio of total positive charge (red) to total negative charge (blue) is 1:1. This is because for each unit of charge (q), there are two field lines, one for the positive charge and one for the negative charge.

What are field lines?

Field lines are a visual tool used to represent the direction and strength of an electrical field. The direction of a field line shows the direction of the force that a positive test charge would experience if it were placed at that point in the field. Meanwhile, the density of the field lines indicates the strength of the electric field.

Since each charge has two field lines per unit of charge (q), it means that the total number of field lines is proportional to the total charge. If there are equal numbers of field lines coming from both the positive and negative charges, it means that the ratio of the total positive charge to the total negative charge is 1:1.

Read more about electricity:

https://brainly.com/question/24786034

#SPJ11

a 23.9 a current flows in a long, straight wire. find the strength of the resulting magnetic field at a distance of 58.3 cm from the wire.

Answers

The magnetic field at a distance of 58.3 cm from a long, straight wire carrying a 23.9 A current, the strength of the resulting magnetic field can be found using the equation B = μ0*I/2π*r, where B is the magnetic field strength, μ0 is the permeability of free space, I is current, and r is the distance.

Therefore, the strength of the magnetic field at 58.3 cm from the wire is B = 4π * 10-7 * 23.9/2π * 58.3 = 0.0067 N/Amp.


The magnetic field strength due to the current in the wire is caused by the current producing a magnetic field, which is a result of moving electric charges (electrons) in the wire. The strength of the magnetic field depends on the magnitude of the current and the distance from the wire.

As the current increases, the magnetic field strength increases; likewise, as the distance from the wire increases, the magnetic field strength decreases. The direction of the magnetic field can be determined using the right-hand rule.


The strength of the magnetic field can be used to calculate the force on a moving charged particle, F = q * v * B, where q is the charge of the particle, v is its velocity, and B is the magnetic field strength. By using this equation, the force acting on a charged particle due to the magnetic field at 58.3 cm from the wire can be found.

To know more about magnetic field refer here:

https://brainly.com/question/23096032#

#SPJ11

Other Questions
Hi, I'm a OHVA highschool student and I want to help other K12 virtual seniors get work submitted before graduation. If you need help with anything, I would love to help you! 1. Your stock broker charges a 7% fee every time stocks are bought and sold. How muchprofit would you earn from the sale of 250 shares that are worth $4.50 each. what does john tear up at the end of act 2? why does he tear up his confession at the end of this act raina is 25 and happily married. however, she has been feeling much less interested in sexual activities since having her ovaries removed. which factor might be causing this? 129. (1+x)y' = (x + 2)(y 1)Calculus vol 2 need help solving this!!!! What are the 5 stages of solar system formation? if the marginal propensity to consume is two thirds, then an increase in personal income taxes of $100 will most likely result in I have no clue what im doing..If work = 100J and time = 20 seconds, what is power 1111111111111111111111111111 friends? which of the following may be a business or organizational customer?multiple choiceall of these examples may be business and organizational customers.a federal government agencya producer of goods and servicesa retailer The Force F with rightwards harpoon with barb upwards on top(2,1,4)N(2,1,4)Nis acting on the body of massm=3kgm=3kgwhile causing it to change the postion from pointA(2,8,0)mA(2,8,0)mto pointB(28,75,68)mB(28,75,68)m.a) Find work done by the force (in one hundredth of Joule) on the distanceABAB.b) Find the total work done by the forces acting on the body over the distanceABAB.c) Find the magnitude of the acceleration of the body (answer to nearest hundredth ofm/s2m/s2) as it moves from pointAAto pointBB. What measurement is closest to the area of the largest circle in square centimeters? 6cm 12 cm What are linked genes? Do linked genes sort independently? Fionna, Anuar and Rizza had some cards. Fionna and Anuar had a total of 349 cards. Fionna had 145 cards. Anuar had 3 times as many cards as Rizza. How many cards did Fionna and Rizza have altogether? How do we draw model? I know question but how do we draw the model I need this asap a client is a poor historian of the client's past medical history. whom should the nurse consult about the client's past history? a solution is made by dissolving 8424 mg of sodium chloride, nacl, in 0.1711 kg of water. what is the concentration in parts per billion? Pls i need help on this question intelligence quotient (iq) scores are normally distributed with a mean of 100 and a standard deviation of 15. according to j.k rowling, there are about 1000 students at hogwart's school of witchcraft and wizardry. how many students would you expect to have an iq of 140 or above? Porcupines can cause damage to wood structures by chewing them. Researchers studied a liquid repellent designed to reduce such damage. A sample of 20 wooden blocks of the same size were treated with the repellent and left outside in an area where porcupines are known to live. After a certain amount of time, the blocks were inspected for the number of porcupine teeth marks visible. The data were used to create the 95 percent confidence interval (4.9,5.8).Which of the following claims is supported by the interval?The mean number of porcupine teeth marks on all wooden blocks treated with the repellent is less than 6. which of the following glacial features is indicative of the local climate becoming dry and cold? group of answer choices boulder trains. striation. drumlins. loess.