would a point closer to the center of the hard drive have a higher, lower, or the same linear acceleration?

Answers

Answer 1

A point closer to the center of the hard drive will have a lower linear acceleration than a point farther from the center. This is due to the fact that linear acceleration is inversely proportional to the radius of rotation. The acceleration is greatest at the outer edges and decreases toward the center.



What is linear acceleration?

Linear acceleration is the rate of change of the velocity of an object that moves in a straight line. It is also referred to as the object's increase in speed or decrease in speed. The same concept applies when it comes to hard drives.

It is pertinent to understand that linear acceleration decreases when the radius of the disk decreases, which means that the closer the point is to the center, the lower the linear acceleration would be. This is why the outermost tracks have higher transfer rates and are utilized more for storing data on hard drives.

Read more about acceleration :

https://brainly.com/question/460763

#SPJ11


Related Questions

true or false: electrically neutral objects have no positive or negative charges, that is why they are neutral

Answers

True, electrically neutral objects have no positive or negative charges, that is why they are neutral.

Electrically neutral objects have an equal number of protons and electrons, so the total charge on the object is zero. This is why we refer to the object as being ‘neutral’. It has no charge.

In a chemical reaction, protons are transferred between particles, such as atoms or ions. When an atom loses or gains protons, its charge changes, either becoming more negative or more positive.

An atom which has the same number of protons and electrons has a net charge of zero and is neutral.

In an electric field, a neutral object experiences no force due to the absence of electric charge on its surface. When placed in a magnetic field, however, a neutral object still experiences a force due to its electrons.

Electrons have a magnetic moment, so they are affected by the magnetic field, causing the neutral object to move.

Electrically neutral objects have no positive or negative charges, that is why they are neutral.

Their charge is zero, so they are not affected by electric fields, but still experience a force in a magnetic field due to the magnetic moment of their electrons.

to know more about neutral refer here:

https://brainly.com/question/15395418#

#SPJ11

a body of mass 2.00 kg is pushed straight upward by a 25.0 n external vertical force near the surface of the earth. what is its acceleration?

Answers

When a body of mass 2.00 kg is pushed straight upward by a 25.0 N external vertical force near the surface of the Earth, its acceleration is 12.5 m/s2. This is equal to the acceleration due to gravity (g).

The acceleration of a body of mass 2.00 kg when pushed straight upward by a 25.0 N external vertical force near the surface of the Earth can be calculated using Newton's Second Law of Motion:

F = ma. This states that the force (F) acting on the body is equal to its mass (m) multiplied by its acceleration (a).

Thus, the acceleration of the body can be found by rearranging the equation to a = F/m, where F = 25.0 N and m = 2.00 kg. This gives an acceleration of 12.5 m/s2.

This acceleration is the same as the acceleration due to gravity (g). The gravitational force (Fg) acting on the body is equal to the mass of the body (m) multiplied by the acceleration due to gravity (g).

Therefore, Fg = mg = (2.00 kg)(9.80 m/s2) = 19.6 N. Since the force (F) pushing the body upwards is greater than Fg, the body will accelerate in the upwards direction.

This is why the acceleration of the body (a) is equal to 12.5 m/s2.

to know more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

when you switch off the lights in your room at night, the walls, ceiling, and floor are at a temperature of about 300 k. why are you not dazzled by the radiation that they emit?

Answers

Answer:

Explanation:

Because by Wien's Law, they emit strongest in infrared and human eyes cannot see infrared radiation

when a mass m is hung on a certain ideal spring, the spring stretches a distance d. if the mass is then set oscillating on the spring, the period of oscillation is proportional to

Answers

Answer:

ω = (k / m)^1/2      proportionality for angular speed in SHM

f =  ω / 2 * π

Since P = 1 / f      the period is inversely proportional to ω

P proportional to m

P inversely proportional to k the spring constant

When a mass m is hung on a certain ideal spring, the spring stretches a distance d. if the mass is then set oscillating on the spring, the period of oscillation is proportional to the square root of the mass-to-spring constant ratio.

A spring, also known as a force spring, is a mechanical device that converts energy from one form to another, depending on Hooke's law. Hooke's law is a principle in physics that states that the force required to compress or extend a spring by a certain length is proportional to that length's deviation from its equilibrium length when it is not being acted upon by any forces.

The formula for Hooke's law is:F = -kxWhere:F is the force applied, x is the displacement from the equilibrium length, k is the spring constantThe period of oscillation is the time required to complete one oscillation. It is dependent on the mass m of the system and the spring constant k. The time period of oscillation is proportional to the square root of the mass-to-spring constant ratio. It is calculated using the formula:T = 2π * √m/k, where:T is the period of oscillationm is the mass of the objectk is the spring constantTherefore, the correct option is C.

Learn more about Hooke's law at:

https://brainly.com/question/2449067

#SPJ11

josh punches his open left hand with his right hand. which statement is true about the forces his two hands exert on each other?

Answers

Josh's left and right hands exert equal and opposite forces on each other when he punches his open left hand with his right hand.

This means that when his right-hand pushes on his left hand, his left hand also pushes on his right hand with the same force.

This is Newton's Third Law of Motion:

"For every action, there is an equal and opposite reaction."

The magnitude of the forces exerted by both hands will be the same, but they will act in opposite directions. The force that Josh's right hand exerts on his left hand will be directed to the left, while the force that his left hand exerts on his right hand will be directed to the right.

As a result, the net force on both hands will be zero, as the two forces cancel each other out.

In summary, Josh's hands will be exerting equal and opposite forces on each other according to Newton's Third Law of Motion.

To know more about forces, refer here:

https://brainly.com/question/13191643#

#SPJ11

suppose you take off in a car with your physics book on top. if you are accelerating forward and the book rides with you, in what direction does friction act on the book

Answers

When you takes off in a car with a physics book on top, if the person is accelerating forward and the book rides with you, then friction will act on the book in the opposite direction to the motion of the book, this means that the direction of friction acting on the book will be in the backward direction.

The friction always acts in the opposite direction to the motion of the object. When the car accelerates forward, the book also starts to move forward with the same speed as the car. However, the book is still in contact with the car's seat, and the seat exerts a force of friction on the book.

According to Newton's third law of motion, the book also exerts an equal and opposite force of friction on the seat. Since the book is moving in the forward direction, the direction of friction acting on it will be opposite to the direction of motion, which means that friction will act in the backward direction. Therefore, the direction of friction acting on the book is in the backward direction.

Learn more about Newton's third law at:

https://brainly.com/question/29768600

#SPJ11

what experimental evidence do you have showing that momentum is conserved in inelastic and elastic collisions?

Answers

The conservation of momentum is a law of physics that governs the behavior of objects in motion. It states that the total momentum of a closed system remains constant if there are no external forces acting on it. This means that the momentum of an object cannot be created or destroyed, only transferred from one object to another.

Experimental evidence of conservation of momentum in inelastic and elastic collisions:

Inelastic Collision:
In an inelastic collision, the kinetic energy is not conserved, but the momentum is conserved. In this type of collision, two objects collide and stick together after the collision. For example, when a car collides with a wall, the kinetic energy is converted into thermal energy and sound, but the momentum is still conserved.
The following experiment shows that momentum is conserved in an inelastic collision. A cart is pushed into a spring and the spring compresses. The cart sticks to the spring and moves forward, but the momentum is conserved.
Elastic Collision:
In an elastic collision, both the momentum and kinetic energy are conserved. In this type of collision, two objects collide and bounce off each other after the collision. For example, when two billiard balls collide, they bounce off each other, but the momentum is still conserved.
The following experiment shows that momentum is conserved in an elastic collision. Two carts are pushed toward each other, and they collide elastically. The carts bounce off each other, but the momentum is still conserved.

In conclusion, experimental evidence shows that the conservation of momentum is a fundamental principle in both inelastic and elastic collisions. This principle is useful in many areas of physics, including the study of collisions, the behavior of fluids, and the motion of celestial bodies.

To know more about the "conservation of momentum": https://brainly.com/question/7538238

#SPJ11

Calculate and compare the gravitational force and the electrical force between two protons that are separated by 1.2 x 10-15 m (G = 6.67 x 10-11 Nm2/kg2, e = 1.60 x 10-19 C, mp = 1.67 x 10-27 kg).

Answers

The  comparison between the gravitational force and the electrical force between two protons that are separated by 1.2 x 10-15 m is 4.47 * 10⁻⁴⁰

What is gravitational force ?

Gravitational attraction between the universe's original gaseous matter allowed it to coalesce and form stars, which eventually condensed into galaxies, so gravity is responsible for many of the universe's large-scale structures. Gravity has an infinite range, but its effects weaken as objects move further away. The general theory of relativity (proposed by Albert Einstein in 1915) most accurately describes gravity as the curvature of spacetime caused by the uneven distribution of mass, causing masses to move along geodesic lines.

using the formula

F = G [tex]\frac{M1 * M2}{R * R}[/tex]

FORCE COMES OUT TO BE ;

4.47 * 10⁻⁴⁰

TO know more about gravitational force , visit ;

brainly.com/question/12528243

#SPJ1

a bulb emits light ranging in wavelength from 2.64e-7 m to 8.66e-7 m. what is the maximum frequency of the light (in hz)?

Answers

A bulb emits light ranging in wavelength from 2.64e-7 m to 8.66e-7 m. The maximum frequency of the light is [tex]1.14 \times 10^{15} Hz.[/tex]

To find the maximum frequency of the light, we can use the formula for the speed of light in a vacuum.

The speed of light (c) is given by [tex]3.00 \times 10^{8} m/s.[/tex]

We can use the following formula to find the frequency of light:

f = c / λ

where f is the frequency of light, c is the speed of light, and λ is the wavelength of light.

The maximum frequency of the light will be when the wavelength is at its minimum value. So, we can use the minimum wavelength in the formula above.

Hence, the maximum frequency of the light is given by:f = c / λmax

                                                                                              = [tex]3.00 \times 10^{8}  / 2.64 \times 10^{-7}[/tex]

                                                                                              = [tex]1.14 \times 10^{15} Hz.[/tex]

for such more question on frequency

https://brainly.com/question/254161

#SPJ11

what wavelength em radiation would be emitted most strongly by matter at the temperature of the core of a nuclear explosion, about 10,000,000 k?

Answers

The wavelength of electromagnetic radiation that would be emitted most strongly by matter at the temperature of the core of a nuclear explosion of 10,000,000 k will be 2.898 × 10^-10 meters.

Wavelength of electromagnetic radiation

The wavelength of electromagnetic radiation emitted by matter at a certain temperature can be determined using Wien's displacement law, which states that the wavelength of maximum emission (λmax) is inversely proportional to the temperature of the object:

λmax = b / T

where b is a constant known as Wien's displacement constant, equal to 2.898 × 10^-3 m·K.

Substituting the given temperature of 10,000,000 K into this equation, we get:

λmax = (2.898 × 10^-3 m·K) / (10^7 K) = 2.898 × 10^-10 m

Therefore, the wavelength of electromagnetic radiation emitted most strongly by matter at the temperature of the core of a nuclear explosion is approximately 2.898 × 10^-10 meters, which corresponds to the ultraviolet region of the electromagnetic spectrum.

More on electromagnetic radiations can be found here: https://brainly.com/question/4185163

#SPJ1

Give the scientific term for these 2 sentences

A switch using one electrical circuit to control a second electrical circuit

The region within which magnet force can be detected


Answers

Four-way switch

Two separate circuits are controlled by one switch.

Magnetic field

1. Relay: A switch using one electrical circuit to control a second electrical circuit

2. Magnetic field: The region within which magnet force can be detected

Relay and Magnetic Fields

A relay is an electrical switch that uses one electrical circuit to control a second circuit. When the first circuit is activated, it closes the second circuit, allowing electricity to flow. This type of switch is commonly used in a variety of applications, such as controlling electric motors, switching between power sources, and providing automated control of lights or other electrical appliances.

A magnetic field is an area around a magnet or electric current where a magnetic force can be detected. Magnetic fields are created by moving electric charges, and the strength and direction of the field is determined by the strength and direction of the charge. Magnetic fields can interact with other magnetic fields, causing them to either attract or repel each other. Magnetic fields are also affected by other materials, such as iron, which can direct and focus the field. Magnetic fields are essential for the functioning of many electronic devices, and can be used to create electric current.

Learn more about Relay and Magnetic Fields here:

https://brainly.com/question/30324217

#SPJ1

how many electrons per second enter the positive end of the battery 2? answer in units of electrons/s.

Answers

The number of electrons per second that enter the positive end of a battery can be calculated by the current flowing through the circuit and the time for which it flows.

Therefore, The formula of current is as

I = Q/t

where I is the current,

Q is the charge passing through the circuit, and

t is the time for which the current flows.

Since one electron carries a charge of -1.6 x 10⁻¹⁹Coulombs, we can calculate the number of electrons passing through the circuit using the following formula:

n = Q/e

where n is the number of electrons and

e is the charge on an electron (-1.6 x 10⁻¹⁹ Coulombs).

If we know the current flowing through the circuit and the time for which it flows, we can calculate the number of electrons per second using the following formula:

n/s = I/e

where n/s is the number of electrons per second.

To learn more about the battery :

https://brainly.com/question/1699616

#SPJ11

what are some of the challenges associated with using solar energy as a primary source of electricity,

Answers

The primary challenge associated with using solar energy as a primary source of electricity is the cost and availability of the technology.

Cost: One of the significant challenges of solar energy is its cost. Solar power systems are expensive to install and maintain, and the initial costs of buying and installing solar panels and batteries can be high.

Capacity: Solar energy is an intermittent power source, meaning it can only produce electricity when the sun is shining. This means that solar power systems need to have a backup power source, such as batteries or an electrical grid, to provide electricity when there is no sunlight available.

Storage: Storing solar energy is a challenge, as batteries used to store energy can be expensive and have a limited lifespan. This means that solar power systems need to be designed to store energy effectively, or they will not be able to provide power when it is needed most.

Weather conditions: Solar panels rely on sunlight to produce electricity, which means that they can be affected by weather conditions such as cloud cover and rain. In areas with a lot of cloud cover or rain, solar power systems may not be able to produce enough electricity to meet demand.

Installation: Installing solar panels requires a large amount of space, which can be challenging in urban areas. Solar panels also need to be installed in a way that maximizes their exposure to the sun, which can be difficult in areas with a lot of shade.

Maintenance: Solar power systems require regular maintenance to ensure that they are working efficiently. This can involve cleaning the solar panels to remove dirt and debris, replacing worn-out components, and checking the system's performance to ensure that it is generating electricity as efficiently as possible.

In conclusion, Solar panels are expensive to install and maintain, and the amount of sunlight they receive will vary depending on the location and weather. Additionally, storing the solar energy collected during the day for use at night can also be a challenge.

To know more about Solar Energy, refer here:

https://brainly.com/question/9704099#

#SPJ11

Based on our understanding of our own solar system, what would be most surprising to observe in an extra-solar system of planets?

Answers

Based on our understanding of our own solar system, the most surprising observation in an extra-solar system of planets would be the presence of a large number of gas giants orbiting very close to their star.

Our solar system consists of the Sun, eight planets, dwarf planets, moons, comets, and asteroids. We know that rocky planets such as Mercury, Venus, Earth, and Mars are located close to the sun, while gas giants such as Jupiter, Saturn, Uranus, and Neptune are located far away from the sun. However, in other solar systems, planets have been discovered in orbits that are completely unexpected and different from what we see in our own solar system.The most surprising observation in an extra-solar system of planets based on our understanding of our own solar system would be the presence of a large number of gas giants orbiting very close to their star. These planets are called hot Jupiters, and they orbit their stars in less than ten days. According to the current model of planetary formation, it is difficult to explain the presence of such planets in these orbits. It is believed that hot Jupiters formed far from their stars, where it is cool enough for gas giants to form, and then migrated inward towards the star.

To learn more about extra-solar system  https://brainly.com/question/14018668

#SPJ11

a 100 cm diameter propeller blade, similar to the blade in example 4.15, is attached to a motor spinning at a constant rate. what is true about the radial (centripetal) acceleration and the tangential acceleration at the end of the blade?

Answers

The true statements about the radial (centripetal) acceleration and the tangential acceleration at the end of the blade are: the radial acceleration is non-zero the tangential acceleration is zero

The radial acceleration is non-zero and the tangential acceleration is zero. This is because, the radial acceleration is determined by the formula, ar = (v²)/r

where ar is the radial acceleration, v is the velocity and r is the radius. Thus, since the propeller blade is spinning at a constant rate, the velocity v is constant.

Therefore, the radial acceleration is constant and non-zero.

The tangential acceleration, on the other hand, is given by at = rα

where at is the tangential acceleration and α is the angular acceleration. Since the blade is spinning at a constant rate, the angular acceleration is zero. Therefore, the tangential acceleration is zero.

So, the correct option is the radial acceleration is non-zero and the tangential acceleration is zero.

Learn more about tangential acceleration at https://brainly.com/question/11476496

#SPJ11

how large must the coefficient of static friction be between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h ?

Answers

The coefficient of static friction between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h is 4.64

Whenever the object rotаtes аround the curved pаth then а net force аcts on the object pointing towаrds the center of а circulаr pаth аnd it is cаlled а centripetаl force. Mаthemаticаlly, we cаn write;

Centripetаl Force = [tex]\frac{mv^{2} }{r}[/tex]

where m is the mass of the body, v is the velocity of the body, and r is the radius of rotation.

We are given:

Radius of rotation r = 145 mMaximum velocity of car v = 130 km/h × [tex]\frac{5}{18}[/tex] = 81.25 m/sm be the mass of the carμs be the coefficient of static friction

Since the car is making circular motion, therefore, necessary centripetal force is provided by the frictional force.

frictional force = centripetal force

μsmg = [tex]\frac{mv^{2} }{r}[/tex]

μs = [tex]\frac{v^{2} }{rg}[/tex]

μs = [tex]\frac{81.25^{2} }{145.9.81}[/tex]

μs = 4.64

Therefore, the coefficient of static friction between the tires of the car and the road surface is 4.64.

For more information about the coefficient of static friction refers to the link: https://brainly.com/question/13828735

#SPJ11

your instructor challenges you and your friend to pull on the ends of a horizontal rope attached to a pair of scales in a tug-of-war, but in such a way that the scale readings on the scales are different. can this be done? explain.

Answers

Answer:

If the scale readings are different then there will be a net force on the person attached to the scales:

Consider any point on the rope - if the forces in each direction are the same there is no acceleration of the rope

F = Δm * a        for any portion of the rope with mass Δm

If any portion of the rope is accelerated, the person attached to the rope must be accelerated

You're designing an external defibrillator that discharges a capacitor through the patient's body, providing a pulse that stops ventricular fibrillation. Specifications call for a capacitor storing 250 J of energy; when discharged through a body with R = 48 Ω transthoracic resistance, the capacitor voltage is to drop to half its initial value in 10 ms.
A) Determine the capacitance (to the nearest ) 10 μF).
B) Determine initial capacitor voltage (to the nearest 100 V) that meet these specs.
I need both correct answers to 2 significant figures.

Answers

a..... 1.04 x 10⁻⁴ Vi

b.... 9500 V

A) Determine the capacitance (to the nearest 10 μF).

First, we should identify the formula that we will use to solve the problem.

The formula that relates to capacitance is:

C = 2E / V². Where C is the capacitance in farads, E is the energy stored in joules, and V is the voltage across the capacitor in volts.

Converting the energy to joules, we have: E = 250J.

Now we know that the voltage needs to drop to half of its initial value in 10 ms. We can use the following formula to calculate the capacitance: C = R x t / ln(Vi / Vf) where R is the resistance in ohms, t is the time in seconds, Vi is the initial voltage, and Vf is the final voltage, which is half of the initial voltage.

B) Plugging in the given values, we get:

C = 48 x 0.01 / ln(Vi / (Vi / 2))Simplifying and solving for capacitance, we get:

C = 1.04 x 10⁻⁴ ViNow we can use the energy formula to solve for Vi:Vi = √(2E / C)

Plugging in the given values, we get:Vi = √(2 x 250 / 1.04 x 10⁻⁴)Simplifying and solving for Vi, we get:Vi = 9469 V

Therefore, the capacitance that meets these specifications is 100 μF and the initial capacitor voltage that meets these specifications is 9500 V, to the nearest 100 V.

Learn more about capacitance

brainly.com/question/28445252

#SPJ11

a rock attached to a string swings in a vertical circle. which free body diagram could correctly describe the force(s) on the rock when the string is in one possible horizontal position?

Answers

The correct free body diagram that describes the forces on the rock when the string is in one possible horizontal position is B.

As the rock swings in a vertical circle, there are a number of forces acting upon it. These forces are gravity, tension and centrifugal force. When the rock is in a horizontal position, its weight will be perpendicular to the tension force. This makes the tension force the only force acting upon the rock in the horizontal position.

As a result, the correct free body diagram that describes the forces acting on the rock when the string is in one possible horizontal position is B.

Learn more about rock swings at https://brainly.com/question/30065997

#SPJ11

g which of the following wavelengths of light is most likely to cause a sunburn? explain your answer. a. 700 nm b. 400 nm c. 200 nm

Answers

Answer:

(b) 400 nm is the far ultraviolet (violet) in the visible spectrum

The shorter wavelengths are more likely to cause sunburn.

200 nm is probably too short to be transmitted by the atmosphere

a pendulum is measured to swing back and forth 15 times in 10 seconds. what is the length of the string?

Answers

The length of the string is 0.48 m.

The length of the string of a pendulum is determined by the period, which is the time it takes for the pendulum to swing back and forth once.

String length = (Gravitational acceleration x (Period)2) / (4π2)

Where Gravitational acceleration is the acceleration due to gravity, which is 9.8 m/s2, and Period is the time it takes the pendulum to swing back and forth once.

The period is 10 seconds divided by 15 swings, or 0.67 seconds.

String length = (9.8 m/s2 x (0.67 s)2) / (4π2) = 0.48 m.

Therefore, the length of the string is 0.48 m.

to know more about string refer here:

https://brainly.com/question/30099412#

#SPJ11

a weight hanging from a spring will remain hanging until the weight is pulled down and released. when the weight is released the spring will bounce up and down. which of newton's laws explains why the spring will bounce?

Answers

This principle can be observed in other everyday scenarios, such as jumping on a trampoline or the recoil of a gun after firing.  Newton's Third Law of Motion is a fundamental principle in classical mechanics and explains why the spring will bounce when the weight is released.

The bouncing of the weight when released is explained by Newton's Third Law of Motion, which states that for every action there is an equal and opposite reaction. When the weight is released, the spring exerts an equal and opposite force on the weight, propelling it upwards and causing it to bounce. This is because when the weight is pulled down, it compresses the spring, storing potential energy. When the weight is released, the spring decompresses and the potential energy is released, propelling the weight in the opposite direction.

To learn more about Newton's Third Law ;

https://brainly.com/question/25998091

#SPJ11

how do air masses contribute to the formation of air fronts?

Answers

Air masses contribute to the formation of air fronts because air masses are large bodies of air that have similar characteristics in terms of temperature, humidity, and stability.

When two air masses with different characteristics come into contact, they form a boundary known as an air front. The characteristics of the two air masses determine the type of air front that forms.

There are four types of air fronts: cold fronts, warm fronts, stationary fronts, and occluded fronts.

Cold fronts occur when a cold air mass displaces a warm air mass, causing the warm air to rise and cool, which leads to cloud formation and precipitation. Warm fronts occur when a warm air mass displaces a cold air mass, causing the warm air to rise gradually over the cold air, leading to gradual cloud formation and precipitation. Stationary fronts occur when two air masses with different characteristics meet but do not move, leading to prolonged periods of precipitation. Occluded fronts occur when a cold front overtakes a warm front and lifts the warm air mass off the ground, leading to cloud formation and precipitation.

Air masses play a significant role in the formation of air fronts because they determine the characteristics of the air mass that will form at the boundary between the two air masses. This, in turn, determines the type of air front that will form and the type of weather that will result. For example, a cold, dry air mass coming into contact with a warm, moist air mass will likely result in a cold front and a period of heavy precipitation.

To learn more about Air masses, visit: https://brainly.com/question/19626802

#SPJ11

The magnetic flux is changing as it passes through two coils that are exactly the same. The induced voltage is greatest in the coil whose flux is changing fastest.
True
False

Answers

Through the coil, the magnetic flux rises. The coil will experience a voltage as a result. This voltage will cause a current to flow. The amount of the emf increases with speed and is 0 in the absence of motion.

What occurs when a wire coil is positioned in a fluctuating magnetic field?

A current will be induced in a coil of wire if it is exposed to a shifting magnetic field. Because of an electric field that is being generated, which drives the charges to move around the wire, current is flowing.

What does a coil's magnetic flux look like when a unit current passes through it?

Self-Inductance: When current passes through a coil, a magnetic field and consequent magnetic flux are created.

To know more about magnetic flux visit:-

brainly.com/question/30858765

#SPJ1

which component of magnetic field - axial ( baxial ) or radial ( bradial ) should be larger at the center of the coil?

Answers

The component of magnetic field should be larger at the center of the coil is the axial.

A magnetic field is generated by a current-carrying wire. The shape of the magnetic field produced by a current-carrying wire is circular. When we coil the wire into a cylindrical shape, the magnetic field lines become parallel to the central axis.

At the center of the coil, the axial component of the magnetic field is maximum because the magnetic field lines are parallel to the central axis. So, the axial component of the magnetic field is larger than the radial component of the magnetic field.

Learn more about magnetic field at:

https://brainly.com/question/11514007

#SPJ11

how hard must each player pull to drag the coach at a steady 2.0 m/s ? express your answer with the appropriate units.

Answers

Each player must pull with a force of 1250 N to drag the coach at a steady 2.0 m/s.

To determine how hard each player must pull to drag the coach at a steady 2.0 m/s, we need to use Newton's second law, which states that the net force acting on an object is equal to its mass times its acceleration:

Fnet = m * a

where Fnet is the net force, m is the mass of the coach and players, and a is the acceleration of the coach and players.

Assuming that the coach and players can be treated as a single object, we can use the given speed to find the acceleration of the object using the formula:

a = v² / (2 * d)

where v is the speed (2.0 m/s) and d is the coefficient of kinetic friction between the coach and the ground.

The force required to overcome friction and drag the coach at a steady speed is given by:

Ffriction = friction coefficient * Fnormal

where Fnormal is the normal force (equal to the weight of the coach and players) and the friction coefficient is a dimensionless quantity that depends on the nature of the contact surface.

Assuming a friction coefficient of 0.5 and a weight of 5000 N for the coach and players, the force required to overcome friction is:

F_friction = (0.5) * (5000 N) = 2500 N

The net force required to move the coach and players at a steady 2.0 m/s is therefore:

Fnet = Ffriction = 2500 N

Finally, we can use Newton's second law to find the force required from each player:

Fnet = m * a

2500 N = (m_coach + m_players) * (v² / (2 * d))

Solving for the mass (m_coach + m_players), we get:

m_coach + m_players = (2500 N * 2 * d) / v²

Assuming a value of 0.3 for the coefficient of kinetic friction between the coach and the ground, we get:

m_coach + m_players = (2500 N * 2 * 0.3) / (2.0 m/s)² = 562.5 kg

Therefore, the force required from each player is:

Fplayer = Fnet / 2 = 1250 N

Learn more about The Force: https://brainly.com/question/26115859

#SPJ11

Our complete guide to US amusement parks delivers vacation ideas for those who enjoy eye-watering speeds, teeth-chattering descents and a g-force that relocates organs. We head to Coney Island to get shot in the air how far and how fast?
1. 100 feet at 75 mph
2. 200 feet at 75 mph
3. 50 feet at 90 mph
4. 150 feet at 90 mph

Answers

Answer:

100 feet at 75 mph.

What is mean by mph?

mph expresses the speed or velocity in miles per hour. Speed means rate of change of distance with respect to time.

speed = distance/time

hence, distance = speed x time

The above equation is the relationship between distance, speed and time.

Coney Island is a famous destination known for its amusement parks, boardwalk, and beautiful beach.

One of its most popular attractions is the Thunderbolt, which is a steel roller coaster that gives riders a thrilling experience of high speeds, steep drops, and sharp turns.

The distance and speed at which riders get shot in the air on the Thunderbolt roller coaster are 100 feet and 75 mph, respectively.

This means that the ride launches riders at a height of 100 feet while travelling at a speed of 75 miles per hour.

This can be a scary experience, as the force of gravity can make riders feel like their organs are relocating.

To know more about velocity:

https://brainly.com/question/16743925?

#SPJ11

stop to think 5.5 an elevator suspended by a cable is moving upward and slowing to a stop. which free-body diagram is correct?

Answers

When an elevator that is suspended by a cable slows down to a stop and is moving upward, the free-body diagram that is correct is A. shows that the net force acting on the elevator is in the downward direction.

The weight of the elevator, which is the force of gravity acting on it, is pulling it down. The upward force being exerted by the cable is also indicated in the free-body diagram. When the elevator slows down, the tension in the cable decreases, which causes the elevator to slow down. Finally, when the elevator comes to a halt, the tension in the cable equals the weight of the elevator, and the net force acting on the elevator is zero.

A free-body diagram is a diagram that shows all of the forces acting on a body. It can also be referred to as a force diagram. Free-body diagrams are used to visually represent the forces that are acting on an object. They aid in the understanding of an object's motion and are frequently used in physics to analyze and comprehend motion.

Learn more about free-body diagram at:

https://brainly.com/question/10148657

#SPJ11

Two aircraft are flying toward each other at the same speed. They each emit a 800 HZ whine. what speed (km/hr) must each aircraft have an order that pitch they both hear is 2 times the emitted frequency. Hint: the speed of sound is 343m/s

Answers

Each aircraft must be moving at a speed of 85.75 km/hr towards each other to hear a pitch that is 2 times the emitted frequency.

What is frequency ?

Frequency is a physical quantity that describes the number of occurrences of a repeating event per unit of time. It is often measured in Hertz (Hz), which represents the number of cycles or vibrations per second.

In the context of waves, such as sound waves or electromagnetic waves, frequency refers to the number of complete cycles of the wave that occur in one second. A high frequency wave has more cycles per second than a low frequency wave.

Frequency is also an important concept in physics, particularly in the study of oscillations and waves. It is used to describe the behavior of systems that oscillate or vibrate, such as a simple pendulum or a guitar string. In these cases, the frequency of the oscillation is related to the natural frequency of the system, which is determined by its mass, stiffness, and other properties.

When two aircraft are moving towards each other, the sound waves from each aircraft are compressed, leading to a higher pitch than the emitted frequency. The pitch heard by the pilots of the aircraft can be calculated using the following formula:

Pitch heard = Emitted frequency * (Speed of sound + Speed of observer) / (Speed of sound - Speed of source)

Since the two aircraft are flying towards each other at the same speed, we can assume that the speed of one aircraft is x km/hr, and the speed of the other aircraft is also x km/hr. Therefore, the relative speed between the two aircraft is 2x km/hr.

Substituting the values given in the formula, we get:

2 * Emitted frequency = Emitted frequency * (343 + 2x) / (343 - x)

Simplifying this equation, we get:

686 - 2x = 343 + 2x

4x = 343

x = 85.75 km/hr

Therefore, each aircraft must be moving at a speed of 85.75 km/hr towards each other to hear a pitch that is 2 times the emitted frequency.

To know more about aircraft visit :-

https://brainly.com/question/5055463

#SPJ1

explain why adding charge to a bee causes hairs on the bee's body to bend more in response to a field.

Answers

Insects use their hair-like mechanoreceptors to detect electrical fields around them. This electrical charge causes the hairs to move and bend towards the source of the field.

Explanation:

Bee hair is also sensitive to static electricity. As bees collect pollen, they become negatively charged, causing the pollen to become positively charged. This charge difference makes it easier for pollen to stick to the bees' hairy bodies and legs.

Therefore, when a bee is charged with static electricity, it becomes easier for its hairs to detect the electrical fields around it. As a result, the hairs on the bee's body will bend more in response to the electrical field.


Learn more about static electricity here:

https://brainly.com/question/12791045#


#SPJ11

Other Questions
what is the relative rate of diffusion between oxygen gas and carbon dioxide? oxygen gas is x the rate of carbon dioxide a is usually not necessary to the scrum method, because scrum implies that team members work as a self-directed group. select one: a. product backlog b. team charter c. gantt chart d. velocity estimate How does the Ortega familys lack of money make Mamas illness a very serious plot complication? ferrous iron (fe2 ) is octahedrally coordinated. this means it should have six ligands. which are the coordination sites in hemoglobin? what does australia lead the world in producing and exporting which groups tend to have a higher than normal probability of dying themselves in the first year following the death of a spouse? Write down three or more important facts about the types of artisans and their work. what should an audit team do when it discovers that fraud risk factors are present on an audit engagement mark performs database queries at work. in the past year, mark was able to retrieve the information requested by others on almost all occasions except on the few occasions when his supervisor was observing his work. as a result, mark received a low rating in his performance appraisal because his supervisor had only seen the instances when mark had failed and had not noticed the successful database queries handled by him. this is an example of: determine the amount of heat transfer required when this is done during a constant-volume process. (you must provide an answer before moving on to the next part.) A triangle has sides of length 5 ft, 9 ft, and 13 ft.What is the measure of the angle opposite the side that is 9 ft long? Round to the nearest degree. true or false. the transfer of energy from one tropic level to the next is very efficient match the following terms with the correct definitions. - homogeneous equilibrium - heterogeneous equilibrium - le chatelier's principle - complex ion a. a metal ion bonded to lewis acids. b. an equilibrium involving a catalyst in the same phase as the other species. c. an equilibrium involving a catalyst in a different phase as the other species. d. if a chemical reaction is subjected to a change in conditions that displaces it from equilibrium, then the reaction adjusts toward a new equilibrium state. the reaction proceeds in the direction that-at least partially-offsets the change in conditions. e. an equilibrium involving reactants and products in the same phase. f. a metal ion bonded to lewis bases. g. if a chemical reaction is subjected to a change in conditions that displaces it from equilibrium, the the reaction adjusts towards a new equilibrium state. the reaction proceeds in the direction that-at least partially-increases the change in conditions. h. none of these if the same horizontal net force were exerted on both vehicles, pushing them from rest over the same distance, what is the ratio of their final kinetic energies? there is a small group of people who still think that the earth is flat despite the fact that they are often otherwise normal members of modern society. they are exhibiting: The three interior angles of a triangle measure z degrees , (x+5)degrees , and (x+25) degrees. Which is the measure of one of the three angles? how many atoms are in fe+ cu204 Whats the answer to this question? I cant seem to find the answer. the correlation coefficient between heights from the ground of two people on the opposite ends of a seesaw would be the smallest and most basic units of lfie are microscopic, self ocntained untis encosed by a water replellign mebrane are called