write the abbreviation for the base unit of each of these quantities in the metric system. mass: m length:

Answers

Answer 1

The abbreviation for the base unit of mass in the metric system is "m" and the abbreviation for the base unit of length in the metric system is "l". The abbreviation for the base unit of mass in the metric system is kg (kilogram) and the abbreviation for the base unit of length in the metric system is m (meter).

What is the metric system? The metric system is a system of measurement used by most countries around the world. It is also known as the International System of Units (SI). It has a base unit for each quantity it measures. These base units can then be used to express quantities of that type, either as a multiple or a fraction. For example, the base unit for mass is the kilogram (kg). We can express mass in grams (g), which is a smaller unit of mass. A kilogram is equal to 1000 grams. Similarly, the base unit for length is the meter (m), and we can express lengths in centimeters (cm) or kilometers (km), which are smaller or larger units of length, respectively. In summary, the metric system has a base unit for each quantity it measures. The base unit for mass is the kilogram (kg) and the base unit for length is the meter (m).

For more details on metric system , click on the below link:

https://brainly.com/question/23183575

#SPJ11


Related Questions

Explain why the transverse pulse traveling on a rope held by two people reflects in the opposite orientation each time it reaches a person.
Drag the terms on the left to the appropriate blanks on the right to complete the sentences. ANSWER: - greater - oppose - second law - increase - smaller - the same
- third law - first law
When a transverse wave pulse reaches a fixed end of the rope, the displacement of the rope end exerts a force on the object that is keeping the end fixed (in this case, a person). By Newton's ___ the person must exert a force of __ magnitude in ___ direction; otherwise the end of the rope would not remain stationary but would the opposite accelerate in the direction of the force due to the wave disturbance. Because this force acts to ___ the force of the incoming wave pulse, it initiates an outgoing wave pulse that is inverted with respect to the incoming wave pulse.

Answers

To complete the given sentences explaining why the transverse pulse traveling on a rope held by two people reflects in the opposite orientation each time it reaches a person order of the words used is third law, the same, oppose, increase.

When a transverse wave pulse reaches a fixed end of the rope, the displacement of the rope end exerts a force on the object that is keeping the end fixed (in this case, a person). By Newton's third law, the person must exert a force of the same magnitude in oppose direction; otherwise, the end of the rope would not remain stationary but would accelerate in the direction of the force due to the wave disturbance. Because this force acts to increase the force of the incoming wave pulse, it initiates an outgoing wave pulse that is inverted with respect to the incoming wave pulse.

When a transverse pulse traveling on a rope held by two people reaches one of the people, the pulse is reflected in the opposite orientation. This happens because of the interaction between the pulse and the person holding the rope.

By Newton's third law, the displacement of the rope end exerts a force on the person that is equal in magnitude but opposite in direction. If the person did not exert an equal and opposite force, the end of the rope would not remain stationary but would instead accelerate in the direction of the force due to the wave disturbance.

The force exerted by the person opposes the force of the incoming wave pulse, initiating an outgoing wave pulse that is inverted with respect to the incoming wave pulse. This happens due to the conservation of energy and momentum, which are described by Newton's first and second laws. The outgoing pulse has a smaller amplitude than the incoming pulse because some energy is lost in the reflection process.

Learn more about transverse wave pulse:

https://brainly.com/question/15531840

#SPJ11

bioelectrical impedance analysis is a commercially available method used to estimate body fat percentage. the device applies a small potential between two parts of the patient's body and measures the current that flows through. with an estimate of the resistance individually of the muscle and fat between the two points, the composition of the tissue can be estimated. assume that the muscle and fat tissue can be modeled as resistors in parallel. part a part complete if the resistance of fat is 3 times that of muscle, what is the resistance of fat if a 1 ma m a current is measured when potential difference of 0.5 v v is applied to the patient's arm?

Answers

2000 ohms is the the resistance of fat if a 1 ma m a current is measured when potential difference of 0.5 v v is applied to the patient's arm.

How to solve for the resistance

we have r = resistance of the muscle

R = fat resistance

we are given R = 3r

such that the R total would be solved using ohms law:

We would have 3r² / 4r

= 0.75r

when we use the Ohm's law we would have the follwoing calculation

0.5 = 0.001 * 0.75 r

we are to solve for the value of r

0.5 = 0.00075r

divide through by:

r = 0.5 / 0.00075

= 666.667

Remember that R = 3r

R = 3 * 666.667

R = 2000 ohms

Read more on resistance here:https://brainly.com/question/17563681

#SPJ1

the grand coulee dam is 1270. m long and 170. m high. the electrical power output from generators at its base is approximately 2000. mw. how many cubic meters of water must flow from the top of the dam per second to produce this amount of power if 92% of the work done on the water by gravity is converted to electrical energy? (each cubic meter of water has a mass of 1000. kg .)

Answers

Hence, 127.2 m3/s per second is the required water flow rate from the dam's crest.

What is a second?

A international unit system (SI) defines the metre per second as the speed of the a body covering a metre in one second, which is measured in terms of the both speed (a scalar number) and speed (a vector quantity with direction and magnitude). m/s, m/s1, m/s, or ms are the SI unit symbols.

How do you calculate a second?

Distance times time is the same for all objects, including cars, when calculating speed and distance. So, a math becomes (60 x 5280) (60 x 60) ≈ 88 meters per second when trying to figure out how fast an automobile is traveling at 60 miles per hour.

To know more about per second visit:

https://brainly.com/question/17125529

#SPJ1

if a test point is marked 5 volts and a sedond test point is marked -3.3 volts. what voltage would you expect to read between the two points if the refernece lead is on the lowest voltage

Answers

The 5-volt reading we can expect between the two test points if the reference lead is on the lowest voltage.

The given data is as follows:

The first test marked voltage = 5 volts

The second test marked voltage = -3.3 volts

Let us assume that the two test points are there is a conductive track between them, the voltage between the two points can be calculated using the voltage difference between the two test points.

The voltage difference between the  two test points is calculated as:

5 volts - (-3.3 volts) = 8.3 volts

If the reference lead is on the lowest voltage, It means that the negative side of the voltmeter is attached to the test point with the lower voltage which is -3.3 volts.

The voltage difference between the  two test points is

8.3 volts - 3.3 volts = 5 volts

Therefore we can conclude that the 5-volt reading we can expect between the two test points.

To learn more about voltage

https://brainly.com/question/14291865

#SPJ4

what is the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg in n?

Answers

The magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg is 981 N.

To determine the magnitude of the force on the child, we must find the magnitude of the centripetal acceleration of the child at the low point first. We can use the equation:

[tex]a_{c}[/tex] = [tex]\frac{v^{2} }{r}[/tex]

where v = 9 m/s and r = 2 m

thus,

[tex]a_{c}[/tex] = [tex]\frac{9^{2} }{2}[/tex]

[tex]a_{c}[/tex] = 40.5 m/s²

And then, we find out the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg.

∑[tex]f_{y}[/tex] = m × [tex]a_{c}[/tex]

[tex]f_{n}[/tex] - w = m × [tex]a_{c}[/tex]

[tex]f_{n}[/tex] = m × [tex]a_{c}[/tex] + w

[tex]f_{n}[/tex] = (18.5 × 40.5) + 18.5 (9.80)

[tex]f_{n}[/tex] = 981 N

Thus, the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg in N is 981 N.

Your question is incomplete, but most probably your full question was

A mother pushes her child on a swing so that his speed is 9.00 m/s at the lowest point of his path. The swing is suspended 2.00 m above the child’s center of mass.

For more information about magnitude of the force refers to the link: https://brainly.com/question/30033702

#SPJ11

if the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, what is the internal resistance of the battery?

Answers

If the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, the internal resistance of the battery can be calculated using Ohm's law. Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. The proportionality constant is called the resistance of the conductor, which is expressed mathematically as V = IR, where V is the voltage, I is the current, and R is the resistance.

The power dissipated by the internal resistance of a battery is given by P = I2R, where P is the power, I is the current, and R is the internal resistance. The rate of internal energy dissipation in the battery is given as 1.0 watt, and the current produced by the battery is given as 0.50 amps.

Using Ohm's law, we can calculate the voltage across the battery as V = IR = 0.50 x R. Therefore, the power dissipated by the internal resistance of the battery is P = I2R = (0.50)2 x R = 0.25R.

Equating the power dissipated by the internal resistance of the battery to the rate of internal energy dissipation, we get:

0.25R = 1.0

Solving for R, we get:

R = 1.0/0.25 = 4 ohms.

Therefore, the internal resistance of the battery is 4 ohms.

Internal energy dissipation is the energy that is lost due to friction or resistance in a system. In the case of a battery, internal energy dissipation refers to the energy that is lost due to the internal resistance of the battery. The internal resistance of a battery is a measure of how much energy is lost due to the resistance of the battery's internal components. The higher the internal resistance of the battery, the more energy is lost as heat, which reduces the battery's efficiency.

To know more about Internal energy dissipation refer here:

https://brainly.com/question/15331125#

#SPJ11

the star sirius is 8.6 light-years from earth (in our earth-based reference frame). suppose you traveled from earth to sirius at 0.92 c . during your trip, how far would you measure the distance from earth to sirius to be?

Answers

Answer:

L = L0 (1 - v^2 / c^2)^1/2

L0 is the proper length and L the distance measured by the space traveler

L = L0 (1 - .92^2)^1/2

L = L0 * .39 = 8.6 L-y * .39 = 3.4 L-y     as measured by space traveler

what results when two waves, in phase and with the same wavelength, interact? what results when two waves, in phase and with the same wavelength, interact? a wave with an amplitude that is the difference between the amplitudes of the initial two waves. a wave with an amplitude that is the larger of the amplitudes of the initial two waves. a wave with an amplitude that is the multiplication of the amplitudes of the initial two waves. a wave with an amplitude that is the sum of the amplitudes of the initial two waves.

Answers

When two waves, in phase and with the same wavelength, interact, the result is a wave with an amplitude that is the sum of the amplitudes of the initial two waves.

Thus, the correct answer is a wave with an amplitude that is the sum of the amplitudes of the initial two waves (D).

What is a wave?

А wаve is а disturbаnce thаt trаvels through а medium, trаnsferring energy from one point to аnother without trаnsferring the mаteriаl medium itself. Wаves cаn be of vаrious types, such аs sound wаves, electromаgnetic wаves, аnd more.

When two wаves interаct, there аre three possible results: reinforcement, interference, аnd а combinаtion of the two. When two wаves interfere with one аnother, their displаcements аdd up to form а resultаnt wаve. The crest of one wаve is in line with the crest of the other wаve, resulting in constructive interference, which results in а wаve with аn аmplitude thаt is the sum of the аmplitudes of the initiаl two wаves.

For more information about wаve refers to the link: https://brainly.com/question/25954805

#SPJ11

T or F: Surface currents flow vertically in the uppermost 400 meters of the water column. False (horizontally).

Answers

The given statement, "surface currents flow vertically in the uppermost 400 meters of the water column," is false because surface currents flow horizontally in the uppermost 400 meters of the water column. They move water parallel to the surface, driven by factors such as wind and temperature differences.

Surface currents are driven by the wind, and they are characterized by movement across the surface of the water. The direction and intensity of surface currents are influenced by a variety of factors, including wind speed and direction, the shape of the coastline, and the rotation of the Earth. These currents are an essential component of the ocean circulation system and can have a significant impact on the climate and the distribution of marine life. They flow parallel to the water columns in the uppermost parts.

Learn more about surface currents here:

https://brainly.com/question/19757282

#SPJ11

determine the limit on the series resistance so the energy remaining after one hour is at least 85 percent of the initial energy.

Answers

The limit on the series resistance so that the energy remaining after one hour is at least 85 percent of the initial energy, is initial energy into 85% by the voltage.

Ohm's Law states that the current in a circuit is directly proportional to the voltage and inversely proportional to the resistance.

Therefore, the total resistance in a circuit can be calculated using the formula: R = V/I

The energy remaining after one hour must be at least 85 percent of the initial energy, we can calculate the resistance by rearranging the formula.

The total resistance can be determined by multiplying the initial energy by 85 percent and dividing it by the voltage. Thus, the limit on the series resistance is [tex]R = (Initial Energy *0.85) / V[/tex].  

To learn more about the series resistance:

https://brainly.in/question/28887091

#SPJ11

a mass of 500g ball is kicked at angle of 45 degree to the horizontal the ball reaches 12m height what is the initial velocity

Answers

The initial velocity of a 500g ball kicked at a 45-degree angle to the horizontal and reaching a height of 12m can be calculated using the kinematic equation.

What is the kinematic equation?

The equation of kinematics is a set of equations that are used to describe the motion of objects. They relate to displacement, velocity, acceleration, and time. Kinematic equations are divided into two categories, depending on the object's acceleration: zero acceleration and non-zero acceleration.

The kinematic equation for the object in motion with uniform acceleration is as follows:v^2 = u^2 + 2asWhere: v = final velocity u = initial velocity a = acceleration s = displacement. To calculate the initial velocity of the ball, we can rearrange the equation above to obtain:u^2 = v^2 - 2as From the given, a = -9.8 m/s² (negative acceleration indicates that the ball is decelerating or moving upward) s = 12m v = 0 (the final velocity is zero because the ball has stopped rising and is about to start falling). We'll use these values to calculate the initial velocity of the ball.u² = (0)² - 2(-9.8)(12)u² = 235.2u = sqrt(235.2)u = 15.33 m/s.

Therefore, the initial velocity of the ball is approximately 15.33 m/s.

Read more about velocity :

https://brainly.com/question/80295

#SPJ11

given two identical iron bars, one of which is a permanent magnet and the other unmagnetized, how could you tell which is which by using only the two bars?

Answers

There are two identical iron bars, one of which is a permanent magnet and the other unmagnetized. We can identify that: when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized.

Iron bars are used to make permanent magnets by a process called magnetization. Permanent magnets are composed of atoms and aligned electrons that have magnetic properties. The other bar that is not magnetized does not have aligned electrons, so it will not attract other magnets as a magnetized bar would.

The direction of a magnetic field will change when a magnet is brought near it. The North Pole will attract the South Pole, and they will come together. The North Pole will repel the North Pole, and the South Pole will repel the South Pole. The magnetized bar will be attracted to the unmagnetized bar, and the unmagnetized bar will not be attracted to the magnetized bar.

As a result, when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized. Thus, with the aid of two bars, one magnetized and the other unmagnetized, we can determine which is which.

To know more about permanent magnets refer here:

https://brainly.com/question/6458972#

#SPJ11

what is the si unit of energy and how is it related to units of mass, distance, and time? multiple choice question. joule, 1 j

Answers

The correct option is A, the si unit of energy and how is it related to units of mass, distance, and time is joule.

The joule is a unit of measurement used to express energy or work done. It is named after the English physicist James Prescott Joule, who studied the relationship between heat and mechanical work in the mid-19th century. One joule is equal to the amount of energy needed to perform work of one newton-meter.

This means that if a force of one newton is applied over a distance of one meter, one joule of work is done. The joule is used to measure a wide variety of energies, including potential energy, kinetic energy, and thermal energy. It is also used to express the amount of work done by machines, such as engines and generators.

To learn more about Joule visit here:

brainly.com/question/18596314

#SPJ4

Complete Question: -

What is the SI unit of energy and how is it related to units of mass, distance, and time?

a. joule

b. watt

c. kilo

d. Newton

As a boat moves through water, it experiences drag, which is similar to air resistance. Does drag slow the boat down or speed it up?

Answers

Answer:

Whether the object or fluid is moving, drag occurs as long as there is a difference in their velocities. Because it is resistant to motion, drag tends to slow down the object. An effective way to reduce it is to alter the shape of the object and make it streamline. Drag Force Examples of Drag Force

Explanation:

how could apply the mechanics of sound wave production from a guitar string to construct a simple model for human vocal cords?

Answers

To apply the mechanics of sound wave production from a guitar string to construct a simple model for human vocal cords, we need to consider the vibration and resonance of both. The vibration of a guitar string and the vocal cords is similar because they both produce sound by vibrating back and forth.

What is the mechanics of sound wave production?

The mechanics of sound wave production are the generation and propagation of sound waves through space. When a guitar string vibrates, it generates sound waves that travel through the air and reach our ears. The frequency and amplitude of the sound waves determine the pitch and volume of the sound.

Take a long, thin piece of material, such as a rubber band or a strip of plastic.2. Stretch it taut between two points, such as two pencils or two pegs.3. Pluck the string with your finger and observe the vibration.4. Vary the tension and length of the string to produce different pitches.

Read more about sound :

https://brainly.com/question/1199084

#SPJ11

Which label identifies a rarefaction?
O A
Ов
O C
OD

Answers

In the longitudinal wave ,B represents the phenomenon of rarefaction. Rarefaction refers to the region of a sound wave where the pressure of the medium is lower than its normal value.

What is rarefaction?

Rarefaction is a term used to describe a decrease in the density or pressure of a substance, such as a gas or liquid. In the context of sound waves, rarefaction refers to the region of a sound wave where the pressure of the medium is lower than its normal value, causing the particles of the medium to be spread further apart than usual.

Sound waves are composed of regions of compression and rarefaction that alternate in a regular pattern as the wave travels through a medium. In a compressional (longitudinal) sound wave, the particles of the medium are pushed together in regions of compression, while they are spread apart in regions of rarefaction. These changes in pressure and density cause the wave to propagate through the medium.

In general, rarefaction can occur in any medium, not just in sound waves. For example, in a gas, rarefaction can be caused by a decrease in pressure, temperature or density. In a liquid, rarefaction can be caused by a decrease in pressure or density. Rarefaction waves can be observed in many natural phenomena, such as atmospheric pressure waves, seismic waves, and waves on the surface of water.

To know more about rarefaction, visit:

https://brainly.com/question/8401754

#SPJ1

A banjo D string is 0.69 m long and has a fundamental frequency of 294 Hz.
Part A
Determine the speed of a wave or pulse on the string.
Express your answer to two significant figures and include the appropriate units.
v =
Part B
Identify first three other frequencies at which the string can vibrate.
Enter your answers using two significant figures in order of increasing frequencies separated by commas.
f2, f3, f4 =

Answers

Answer:

Part A:

The speed of a wave on the string can be calculated using the formula:

v = fλ

where f is the frequency and λ is the wavelength. In this case, we only know the frequency of the fundamental mode, so we need to use another formula that relates the wavelength and the length of the string:

λn = 2L/n

where n is the mode number (n = 1 for the fundamental mode), and λn is the wavelength of the nth mode. Substituting this expression for λ into the first formula, we get:

v = fn × 2L/n

Substituting the given values, we get:

v = (294 Hz) × 2(0.69 m)/(1)

v = 406 m/s

Therefore, the speed of a wave or pulse on the string is 406 m/s.

Part B:

The frequencies of the other modes of vibration can be calculated using the formula:

fn = nv/2L

where n is the mode number, v is the speed of the wave on the string (which we found in Part A), and L is the length of the string. Substituting the given values, we get:

f2 = (2 × 406 m/s)/(2 × 0.69 m) = 589 Hz

f3 = (3 × 406 m/s)/(2 × 0.69 m) = 883 Hz

f4 = (4 × 406 m/s)/(2 × 0.69 m) = 1178 Hz

Therefore, the first three other frequencies at which the string can vibrate are 589 Hz, 883 Hz, and 1178 Hz.

what observation can you make that allows you to determine the relative magnitudes of the forces on the upper book?

Answers

Observing the reaction of the book when placed on the table, we can determine the relative magnitudes of the forces on the upper book. If the book stays in place, then the magnitude of the normal force is equal to the gravitational force. If the book slides down, then the gravitational force is greater than the normal force, and if the book slides up, then the normal force is greater than the gravitational force.

To determine the relative magnitudes of the forces on the upper book, we can observe the reaction of the book when placed on the table. If the book stays in place and does not move, then the forces on the upper book are in balance, meaning that the magnitude of the normal force is equal to the gravitational force.

To explain further, the normal force is the force that the table exerts on the book. It opposes the force of gravity, which is the force of attraction between the book and the Earth. When the normal force is equal to the gravitational force, the book is in equilibrium, meaning that it stays in place. When the gravitational force is greater than the normal force, the book slides down, and when the normal force is greater than the gravitational force, the book slides up.

for such more question on magnitudes

https://brainly.com/question/24468862

#SPJ11

an electric eel can generate a 278-v, 0.8-a shock for stunning its prey. what is the eel's power output?

Answers

The electric eel's power output is 222.4 Watts

Given voltage (V) = 278 V

Current (I) = 0.8 A

To find the electric eel's power output, we have to use the formula

P = IV,

Where P is the power output, I is current, and V is the voltage.

So, we can calculate the electric eel's power output as follows:

Power Output (P) = IVP

⇒278 × 0.8

Power Output (P) = 222.4 Watts

Hence, The power output of the electric eel is 222.4 Watts.

To know more about "power output": https://brainly.com/question/866077

#SPJ11

an asteroid orbits the sun in a highly elliptical orbit. as the asteroid gets closer to the sun, how are the total mechanical energy and gravitational potential energy of the asteroid-sun system changing, if at all?

Answers

The total mechanical energy and gravitational potential energy of the asteroid-sun system will change.

Asteroid-sun system

As the asteroid gets closer to the sun in its highly elliptical orbit, both the total mechanical energy and gravitational potential energy of the asteroid-sun system will change.

The total mechanical energy of the asteroid-sun system is the sum of its kinetic energy and gravitational potential energy. As the asteroid moves closer to the sun, its kinetic energy will increase due to the increase in speed, but its gravitational potential energy will decrease due to the decrease in distance from the sun. Therefore, the total mechanical energy of the asteroid-sun system will remain constant, according to the law of conservation of energy.

However, if the asteroid encounters any gravitational forces or other external forces, such as a collision with another object or a thrust from a spacecraft, its mechanical energy can change.

More on asteroids can be found here: https://brainly.com/question/19161842

#SPJ1

g which of the following statements is correct about this circuit? the equivalent resistance of the circuit is the algebraic sum of all resistors. all of these options are true. total voltage on this combination is an algebraic sum of voltages on each resistor. currents through all resistors are the same.

Answers

The following statement is true about this circuit: option (A) The equivalent resistance of the circuit is the algebraic sum of all resistors.

This means that the total resistance of the circuit is equal to the sum of the individual resistances of each resistor. The total voltage on this combination is an algebraic sum of voltages on each resistor. This means that the total voltage of the circuit is equal to the sum of the voltages across each individual resistor.

The currents through all resistors are the same. This means that the total current that flows through the circuit is the same as the current that flows through each individual resistor.

To summarize, in a series circuit the equivalent resistance, total voltage, and current are equal to the algebraic sum of all the individual resistances, voltages, and currents respectively.  

To know more about resistance refer here:

https://brainly.com/question/11431009#

#SPJ11

which choice accurately describes what light is?responsesneither a particle nor a waveneither a particle nor a waveboth a particle and a waveboth a particle and a wave,only a particleonly a particleonly a waveonly a wave

Answers

The correct option is C. Both a particle and a wave accurately describe what light is. This is known as the wave-particle duality of light

Wave-particle duality is a fundamental concept in physics that describes the behavior of matter and energy at the atomic and subatomic scale. It states that matter and energy can exhibit both wave-like and particle-like behavior, depending on how they are observed or measured.

For example, light can be observed as both a wave and a particle, depending on the experiment. When it behaves as a wave, it exhibits characteristics such as diffraction, interference, and polarization. When it behaves as a particle, it exhibits characteristics such as energy and momentum. The wave-particle duality has significant implications for our understanding of the nature of reality and the fundamental laws of physics, and it has led to the development of many important technologies, such as lasers, transistors, and semiconductors.

To learn more about Wave-particles visit here:

brainly.com/question/15385740

#SPJ4

Complete Question: -

which choice accurately describes what light is? responses neither

A). a particle nor a wave neither

B). a particle nor a wave

C). both a particle and wave both a particle and a wave,

D). only a particle only a particle only a wave only a wave

why do the solar system's many small bodies, such as asteroids, comets, and small moons, seem unlikely as potential homes to life?

Answers

The solar system's many small bodies, such as asteroids, comets, and small moons, are unlikely as potential homes to life due to the fact that these celestial objects have too little gravity to support an atmosphere and most have no liquid water.

This is because their small sizes and masses do not allow for enough gravitational force to retain an atmosphere, and the extreme temperatures make liquid water impossible. Additionally, many small bodies lack the necessary components needed to support life, such as organic compounds or the right amount of radiation.

Asteroids, comets, and small moons typically have a low density, which means they are composed of rocks, dust, or ice, which would not support life. Moreover, these celestial objects have highly variable rotational periods and orbits, which would result in chaotic and extremely variable temperatures, making it difficult for any life forms to survive.

These celestial objects are also very small in comparison to other bodies in the solar system, meaning they receive far less sunlight than larger bodies. This is important for life to thrive because it requires energy from the sun to grow, reproduce, and obtain nutrients. The lack of energy from the sun, combined with the lack of liquid water and a protective atmosphere, makes these small bodies unlikely candidates for supporting life.

Therefore, it is unlikely to consider the celestial objects as potential homes because of the lack of sustainable living conditions like gravity, water, oxygen, and other organic substances.

To know more about asteroids, refer here:

https://brainly.com/question/19161842#

#SPJ11

6. a 21.00-kg child initially at rest slides down a playground slide from a height of 3.40 m above the bottom of the slide. if her speed at the bottom is 2.30 m/s, how much energy is lost due to friction?

Answers

If a 21.00-kg child slide from a height of 3.40 m above the bottom of the slide and her speed at the bottom is 2.30 m/s, the amount of energy lost due to friction is 644.18 J.

The potentiаl energy of аn object depends on the locаtion of the object from the bottom reference floor аnd the mаss of the object. The аmount of energy contаins by the object аt аny height is known аs the potentiаl energy of thаt object.


We are given:

The mass of the child is: m = 21 kgThe height of the slide from the bottom is: h = 3.40 mThe speed at the bottom is: v = 2.30 m/s

The energy of the child at the upper end of the slide is,

[tex]E_{u}[/tex] = mgh

Substitute the values in the above equation

[tex]E_{u}[/tex] = 21 kg × 9.8 m/s2 × 3.40 m

= 699.72 J


The energy at the bottom of the slide is,

[tex]E_{b}[/tex] = [tex]\frac{1}{2}(mv^{2})[/tex]

Substitute the values in the above equation.

[tex]E_{b}[/tex] = [tex]\frac{1}{2}(21.2.30^{2})[/tex]

[tex]E_{b}[/tex] = 55.54 J

The energy lost due to friction is,

[tex]E_{f}[/tex] = [tex]E_{u}[/tex] - [tex]E_{b}[/tex]

Substitute the values in the above equation

[tex]E_{f}[/tex] = 699.72 - 55.54

[tex]E_{f}[/tex] = 644.18 J

Thus, the energy lost due to friction is 644.18 J.

For more information about potentiаl energy refers to the link: https://brainly.com/question/14904642

#SPJ11

horses that move with the fastest linear speed on a merry-go-round are located anywhere, because they all move at the same speed. near the center. near the outside.

Answers

Horses that move with the fastest linear speed on a merry-go-round are located near the outside.

A merry-go-round is an amusement park ride that comprises a rotating circular platform equipped with seats or mounts for people to ride on. When the ride is operating, the circular platform rotates around a fixed central axis at a constant velocity, while the people on it rotate with the platform. Linear speed refers to the velocity of the object in a straight line path, regardless of its direction of movement.

Therefore, the linear speed of the mounts on the merry-go-round depends on the radius of the circular path they move on. The closer the horse is to the center, the shorter the path it has to cover during one rotation of the platform, meaning it has a slower linear speed. Conversely, the farther the horse is from the center, the longer the path it has to cover, hence it has a faster linear speed. As a result, the mounts located near the outside of the merry-go-round move with the fastest linear speed.

Learn more about the linear speed at:

https://brainly.com/question/12707353

#SPJ11

suppose you were dragging a table across a rough floor. in this case, the potential energy for friction depends on which quantity or quantities? (choose all that apply)

Answers

In dragging a table across a rough floor, the potential energy for friction depends on the coefficient of friction, normal force, and distance traveled by the table, hence option (a), (b), and (c) are correct.

In this case, the potential energy for friction would depend on the following quantities:

Coefficient of friction: The coefficient of friction between the table and the floor would determine how much force is required to move the table and hence, the potential energy for friction.

Normal force: The normal force acting on the table due to the weight of the table and any objects placed on it would also affect the potential energy for friction.

Distance moved: The distance the table is moved would determine the amount of work done against friction and hence, the potential energy for friction.

Surface area: The surface area in contact between the table and the floor could also affect the potential energy for friction.

Overall, the potential energy for friction depends on a combination of factors, including the properties of the surfaces in contact, the force required to move the object, and the distance moved.

Therefore correct options are (a), (b), and (c).

Suppose you were dragging a table across a rough floor. in this case, the potential energy for friction depends on which quantity or quantities? (choose all that apply)

a. The total distance the table travels.

c. The coefficient of friction between the table and the floor.

d. The normal force that the floor exerts on the table.

e. There is no potential energy for frictional forces.

Learn more about friction:

https://brainly.com/question/24338873

#SPJ11

our resistors are connected to a source of emf as shown. Rank the four resistors in order of the current through the resistor, from highest to lowest.A. the 6.00-S2 resistor B. the 8.00-S2 resistor C. the 20.0-2 resistor D. the 25.0-S2 resistor

Answers

the ranking of the resistors in terms of current, from highest to lowest, is A, B, C, D.

To rank the four resistors in order of the current through the resistor from highest to lowest, we need to consider Ohm's Law, which states that the current (I) is equal to the voltage (emf) divided by the resistance (R). Mathematically, this is represented as I = emf / R.

Assuming that all resistors are connected to the same source of emf, the resistor with the lowest resistance will have the highest current, and the resistor with the highest resistance will have the lowest current. Therefore, we can rank the resistors based on their resistance values:

1. A. the 6.00-Ω resistor
2. B. the 8.00-Ω resistor
3. C. the 20.0-Ω resistor
4. D. the 25.0-Ω resistor

So the ranking of the resistors in terms of current, from highest to lowest, is A, B, C, D.

To learn more about resistors https://brainly.com/question/24858512

#SPJ11

how much work is done by a person lifting a 6.7-kg object from the bottom of a well at a constant speed of 2.5 m/s for 9 s? write your answer in joules.

Answers

The amount of work done by a person lifting a 6.7-kg object from the bottom of a well at a constant speed of 2.5 m/s for 9 s is 1517.25 Joules.

The work done is determined using the equation below;

W = FdW = mgd

Where,W = Work done by the person,m = mass of object = 6.7 kg,g = acceleration due to gravity = 9.8 md = distance lifted by the person = ?We know that F = m(g + a) where a is the acceleration of the object that was lifted. The object is lifted at a constant velocity and so the acceleration of the object is zero. Hence,

F = mgF = 6.7 × 9.8F = 65.66 N

We can now determine the distance d that was lifted using the equation below;

d = vt

Where,v = constant velocity = 2.5 m/s.t = time taken = 9 s

Substituting the values; d = 2.5 × 9d = 22.5 m

Now we can determine the work done;

W = FdW = 65.66 × 22.5W = 1472.85 Joules (3 decimal places)

The work done by the person lifting a 6.7-kg object from the bottom of a well at a constant speed of 2.5 m/s for 9 s is 1517.25 Joules (2 decimal places)Answer: 1517.25 Joules.

More on work: https://brainly.com/question/29568084

#SPJ11

the wavelengths for visible light rays correspond to which of these options? a. about the size of a pen b. about the size of a virus or a large molecule

Answers

The wavelengths for visible light rays correspond to about the size of a pen. Option a is correct.

Visible light consists of electromagnetic waves with wavelengths that range from approximately 400 to 700 nanometers (nm), or billionths of a meter. This corresponds to frequencies ranging from approximately 430 to 750 terahertz (THz). These wavelengths are much larger than the size of a virus or a large molecule, which typically range from a few nanometers to a few micrometers in size. In comparison, the size of a pen is typically several centimeters long, which is much larger than the wavelength of visible light. Hence, option a is correct choice.

To know more about wavelengths, here

brainly.com/question/2505945

#SPJ4

Answer: C.

about the size of an amoeba

Explanation: ed mentum or plato

a flyewheel has a diameter of 1.72 m and a mass of 902 kg. what torque in newtons is needed to produce and angular acceleration of 100 rpm/s

Answers

A torque of 3471.9 N·m is needed to produce an angular acceleration of 100 rpm/s in a flywheel with a diameter of 1.72 m and a mass of 902 kg.

How to find the torque

First, let's convert the angular acceleration from revolutions per minute per second (rpm/s) to radians per second per second (rad/s²):

100 rpm/s = 100 × 2π/60 rad/s² ≈ 10.47 rad/s²

The moment of inertia of a flywheel can be calculated using the formula:

I = (1/2)mr²

where

m is the mass of the flywheel and

r is the radius (half of the diameter).

Thus, we have:

r = 1.72/2 = 0.86 m

m = 902 kg

I = (1/2) × 902 kg × (0.86 m)² ≈ 331.9 kg·m²

The torque (T) required to produce the desired angular acceleration (α) can be found using the formula:

T = I × α

T = 331.9 kg·m² × 10.47 rad/s² ≈ 3471.9 N·m

Learn more about torque at:

https://brainly.com/question/1233416

#SPJ1

Other Questions
identify adverbs LL.3 ixl 8th grade WILL GIVE BRAINLIESTMatch the definition or example to the term.1 . attentiveness and patiencerequirements of a good listener2 . headingAP or UPI3 . primary sourcename and address of the person to whom a letter is sent4 . inside address"Your friend,"5 . Readers' Guideyour address and the date6 . wire servicesknowing size and makeup is important7 . salutation"Dear Sirs:"8 . closingan eyewitness account9 . statisticsused to find magazine articles What does it mean when a Michotte retractor was placed cranially mean? Which of the following is most likely to be true of consumers who experience time pressure while deciding on a purchasing activity?a. Consumers are more likely to process purchase related information at a deeper level.b. Consumers are more likely to rely on simple choice heuristics.c. Consumers' orientations are more likely to switch from utilitarian to hedonic.d. Consumers are less likely to buy brands positioned as relatively high quality.e. Consumers are more likely to shop with others rather than shopping alone. according to the census bureau, in october 2016, the average house price in the united states was $27,158. 6 years earlier, the average price was $21,708. what was the annual increase in the price of the average house sold? Select the 4 examples of physical weathering from the list below.A) The color of a rock changes over time as it is exposed to air and water.B) The top of a mountain becomes rounded over tens of thousands of years.C) A sidewalk is broken by the roots of the tree below it.D) A cave is created by limestone dissolving in water.E) Water freezes in a crack in a rock causing the rock to split in two.F) Small rocks on a beach tumble against each other as the tides move in and out.If I get it right I'll mark you brainliest, I originally selected ABEF but got 6.667/10 describe how the thickness and age of sediments on the seafloor change with distance from a mid-ocean ridge. what can be learned from this? the graph of the relationship between yield to maturity and time to maturity for newly issued bonds selling at par is referred to as the which phase on the growth curve for a bacterial population contains a high number of viable cells for the longest time Which statement best compares the energy and frequency of green waves to orange waves? Green waves have a lower frequency and contain less energy than orange waves. Green waves have a higher frequency and contain more energy than orange waves. Orange waves have a higher frequency and contain less energy than green waves. Orange waves have a lower frequency and contain more energy than green waves. there are 75 people at the city swim park today. everyone in the park was wearing swim suits or sunglasses, some people had both. how many people had swim suits on but not sunglasses, if you know 63 people have swim suits on and 43 have sunglasses? viscous magmas are stored as a mostly solid, crystalline mush. it can be activated by which of the following? multiple choice fracturing by fault movements that connect to isolated magma bodies and reduce the pressure an injection of new, hot magma an injection of new, hot magma and fracturing by fault movements that connect to isolated magma bodies and reduce the pressure an injection of seawater a massive increase in spreading center rates I NEED HELP ON THIS ASAP! Factor 64v+8w. ASAPPP PLSS if a household has $40,000 in taxable income and its tax liability is $4,000, the household's average tax rate is a. 10 percent. b. 25 percent. c. 40 percent. d. 50 percent elie and his father decide to leave buna when the germans evacuate the camp. what would have happened if they had remained at buna? which sociologist studied the arunta, an australian society, and developed a fundamental thesis to help explain all forms of society? multiple choice question. marx weber durkheim comte if 12,500 units were produced and sold, what is the average fixed manufacturing cost per unit produced? during your pain assessment, the patient describes his pain as a burning pain in his lower extremities. what type of pain does this describe? , what did thegrowth of industry in the New Englandregion lead to?O an increase in urban populationO a decrease in enslaved personsO an increase in farmingO a decrease in trade