Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal.

Answers

Answer 1

In the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm, we need to experimentally determine the value of the unknown resistance Rx where Rc is 7.3.

If the point of balance of the Wheatstone bridge we built is reached when l2 is 1.8 cm, we have to calculate the experimental value for Rx.

The Wheatstone bridge circuit shown in Figure 3-2 is balanced when the potential difference across point B and D is zero.

This happens when R1/R2 = Rx/R3. Thus, the resistance Rx can be determined as:

Rx = (R1/R2) * R3, where R1, R2, and R3 are the resistances of the resistor in the circuit.

To find R2, we use the slide wire of total length 7.7 cm. We can say that the resistance of the slide wire is proportional to its length.

Thus, the resistance of wire of length l1 would be (R1 / 7.7) l1, and the resistance of wire of length l2 would be (R2 / 7.7) l2.

Using these formulas, the value of R2 can be calculated:

R1 / R2 = (l1 - l2) / l2 => R2

= R1 * l2 / (l1 - l2)

= 3.3 * 1.8 / (7.7 - 1.8)

= 0.905 Ω.

Now that we know the value of R2, we can calculate the value of Rx:Rx = (R1 / R2) * R3 = (3.3 / 0.905) * 7.3 = 26.68 Ω

Therefore, the experimental value for Rx is 26.7 Ω.

To know more about resistance visit:

https://brainly.com/question/32301085

#SPJ11


Related Questions

Required information A 35.0-nC charge is placed at the origin and a 57.0 nC charge is placed on the +x-axis, 2.20 cm from the origin. What is the electric potential at a point halfway between these two charges?
V =

Answers

The electric potential at a point halfway between the 35.0 nC charge at the origin and the 57.0 nC charge on the +x-axis is 1.83 kV.

To calculate the electric potential at a point halfway between the two charges, we need to consider the contributions from each charge and sum them together.

Given:

Charge q1 = 35.0 nC at the origin (0, 0).

Charge q2 = 57.0 nC on the +x-axis, 2.20 cm from the origin.

The electric potential due to a point charge at a distance r is given by the formula:

V = k * (q / r),

where V is the electric potential, k is the electrostatic constant (k = 8.99 x 10^9 N m^2/C^2), q is the charge, and r is the distance.

Let's calculate the electric potential due to each charge:

For q1 at the origin (0, 0):

V1 = k * (q1 / r1),

where r1 is the distance from the point halfway between the charges to the origin (0, 0).

For q2 on the +x-axis, 2.20 cm from the origin:

V2 = k * (q2 / r2),

where r2 is the distance from the point halfway between the charges to the charge q2.

Since the point halfway between the charges is equidistant from each charge, r1 = r2.

Now, let's calculate the distances:

r1 = r2 = 2.20 cm / 2 = 1.10 cm = 0.0110 m.

Substituting the values into the formula:

V1 = k * (35.0 x 10^(-9) C) / (0.0110 m),

V2 = k * (57.0 x 10^(-9) C) / (0.0110 m).

Calculating the electric potentials:

V1 ≈ 2863.64 V,

V2 ≈ 4660.18 V.

To find the electric potential at the point halfway between the charges, we need to sum the contributions from each charge:

V = V1 + V2.

Substituting the calculated values:

V ≈ 2863.64 V + 4660.18 V.

Calculating the sum:

V ≈ 7523.82 V.

Therefore, the electric potential at a point halfway between the two charges is approximately 7523.82 volts.

To learn more about electric potential, Click here:

https://brainly.com/question/31173598

#SPJ11

Determine the Schwartzschild radius of a black hole equal to the mass of the entire Milky Way galaxy (1.1 X 1011 times the mass of the Sun).

Answers

The Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.

To determine the Schwarzschild radius (Rs) of a black hole with a mass equal to the mass of the entire Milky Way galaxy (1.1 × 10^11 times the mass of the Sun), we can use the formula:

Rs = (2 * G * M) / c^2,

where:

Rs is the Schwarzschild radius,G is the gravitational constant (6.67 × 10^-11 N m^2/kg^2),M is the mass of the black hole, andc is the speed of light (3.00 × 10^8 m/s).

Let's calculate the Schwarzschild radius using the given mass:

M = 1.1 × 10^11 times the mass of the Sun = 1.1 × 10^11 * (1.99 × 10^30 kg).

Rs = (2 * 6.67 × 10^-11 N m^2/kg^2 * 1.1 × 10^11 * (1.99 × 10^30 kg)) / (3.00 × 10^8 m/s)^2.

Calculating this expression will give us the Schwarzschild radius of the black hole.

Rs ≈ 3.22 × 10^19 meters.

Therefore, the Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.

To learn more about Milky Way galaxy, Visit:

https://brainly.com/question/30278445

#SPJ11

3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.

Answers

The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.

The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.

The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.

When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.

The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.

However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

Learn more about spring constant here: brainly.com/question/29975736

#SPJ11

An RLC series circuit has a 1.00 kΩ resistor, a 130 mH
inductor, and a 25.0 nF capacitor.
(a)
Find the circuit's impedance (in Ω) at 490 Hz.

(b)
Find the circuit's impedance (in Ω) at 7.50 k

Answers

An RLC series circuit has a 1.00 kΩ resistor, a 130 mH inductor, and a 25.0 nF capacitor.(a)The circuit's impedance at 490 Hz is approximately 1013.53 Ω.(b)The circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.

(a) To find the circuit's impedance at 490 Hz, we can use the formula:

Z = √(R^2 + (XL - XC)^2)

where Z is the impedance, R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.

Given:

R = 1.00 kΩ = 1000 Ω

L = 130 mH = 0.130 H

C = 25.0 nF = 25.0 × 10^(-9) F

f = 490 Hz

First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC):

XL = 2πfL

= 2π × 490 × 0.130

≈ 402.12 Ω

XC = 1 / (2πfC)

= 1 / (2π × 490 × 25.0 × 10^(-9))

≈ 129.01 Ω

Now we can calculate the impedance:

Z = √(R^2 + (XL - XC)^2)

= √((1000)^2 + (402.12 - 129.01)^2)

≈ √(1000000 + 27325.92)

≈ √1027325.92

≈ 1013.53 Ω

Therefore, the circuit's impedance at 490 Hz is approximately 1013.53 Ω.

(b) To find the circuit's impedance at 7.50 kHz, we can use the same formula as before:

Z = √(R^2 + (XL - XC)^2)

Given:

f = 7.50 kHz = 7500 Hz

First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC) at this frequency:

XL = 2πfL

= 2π × 7500 × 0.130

≈ 6069.08 Ω

XC = 1 / (2πfC)

= 1 / (2π × 7500 × 25.0 × 10^(-9))

≈ 212.13 Ω

Now we can calculate the impedance:

Z = √(R^2 + (XL - XC)^2)

= √((1000)^2 + (6069.08 - 212.13)^2)

≈ √(1000000 + 36622867.96)

≈ √37622867.96

≈ 6137.02 Ω

Therefore, the circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.

To learn more about reactance visit: https://brainly.com/question/31369031

#SPJ11

When one person shouts at a football game, the sound intensity level at the center of the field is 60.8 dB. When all the people shout together, the intensity level increases to 88.1 dB. Assuming that each person generates the same sound intensity at the center of the field, how many people are at the game?

Answers

Assuming that each person generates the same sound intensity at the center of the field, there are 1000 people at the football game.

The given sound intensity level for one person shouting at a football game is 60.8 dB and for all the people shouting together, the intensity level is 88.1 dB.

Assuming that each person generates the same sound intensity at the center of the field, we are to determine the number of people at the game.

I = P/A, where I is sound intensity, P is power and A is area of sound waves.

From the definition of sound intensity level, we know that

β = 10log(I/I₀), where β is the sound intensity level and I₀ is the threshold of hearing or 1 × 10^(-12) W/m².

Rewriting the above equation for I, we get,

I = I₀ 10^(β/10)

Here, sound intensity level when one person is shouting (β₁) is given as 60.8 dB.

Therefore, sound intensity (I₁) of one person shouting can be calculated as:

I₁ = I₀ 10^(β₁/10)I₁ = 1 × 10^(-12) × 10^(60.8/10)I₁ = 10^(-6) W/m²

Now, sound intensity level when all the people are shouting (β₂) is given as 88.1 dB.

Therefore, sound intensity (I₂) when all the people shout together can be calculated as:

I₂ = I₀ 10^(β₂/10)I₂ = 1 × 10^(-12) × 10^(88.1/10)I₂ = 10^(-3) W/m²

Let's assume that there are 'n' number of people at the game.

Therefore, sound intensity (I) when 'n' people are shouting can be calculated as:

I = n × I₁

Here, we have sound intensity when all the people are shouting,

I₂ = n × I₁n = I₂/I₁n = (10^(-3))/(10^(-6))n = 1000

Hence, there are 1000 people at the football game.

Learn more about sound intensity https://brainly.com/question/14349601

#SPJ11

Diamagnets have the property that they "dampen" the effects of an external magnetic field by creating an opposing magnetic field. The diamagnet thus has an induced dipole moment that is anti-aligned, such that the induced north pole is closer to the north pole creating the external field. An application of this is that diamagnets can be levitated (Links to an external site.).
Now, the mathematics of generally describing a force by a non-uniform field on a dipole is a little beyond the scope of this course, but we can still work through an approximation based on energy. Essentially, whenever the theoretical loss of gravitational potential energy from "falling" no longer can "pay the cost" of increasing the magnetic potential energy, the object no longer wants to fall.
Suppose a diamagnetic object floats above the levitator where the magnitude of the magnetic field is 18 T, which is inducing* a magnetic dipole moment of 3.2 μA⋅m2 in the object. The magnetic field 2.0 mm below the object is stronger with a magnitude of 33 T. What is the approximate mass of the floating object?
Give your answer in units of g (i.e., x10-3 kg), and use g = 9.81 m/s2. You may assume the object's size is negligible.

Answers

The approximate mass of the floating object is approximately 37.99 grams.

To solve this problem, we can use the concept of potential energy. When the diamagnetic object floats above the levitator, the gravitational potential energy is balanced by the increase in magnetic potential energy.

The gravitational potential energy is by the formula:

[tex]PE_gravity = m * g * h[/tex]

where m is the mass of the object, g is the acceleration due to gravity, and h is the height from the reference point (levitator) to the object.

The magnetic potential energy is by the formula:

[tex]PE_magnetic = -μ • B[/tex]

where μ is the magnetic dipole moment and B is the magnetic field.

In equilibrium, the gravitational potential energy is equal to the magnetic potential energy:

[tex]m * g * h = -μ • B[/tex]

We can rearrange the equation to solve for the mass of the object:

[tex]m = (-μ • B) / (g • h)[/tex]

Magnetic dipole moment [tex](μ) = 3.2 μA⋅m² = 3.2 x 10^(-6) A⋅m²[/tex]

Magnetic field above the object (B1) = 18 T

Magnetic field below the object (B2) = 33 T

Height (h) =[tex]2.0 mm = 2.0 x 10^(-3) m[/tex]

Acceleration due to gravity (g) = 9.81 m/s²

Using the values provided, we can calculate the mass of the floating object:

[tex]m = [(-3.2 x 10^(-6) A⋅m²) • (18 T)] / [(9.81 m/s²) • (2.0 x 10^(-3) m)][/tex]

m = -0.03799 kg

To convert the mass to grams, we multiply by 1000:

[tex]m = -0.03799 kg * 1000 = -37.99 g[/tex]

Since mass cannot be negative, we take the absolute value:

m ≈ 37.99 g

Therefore, the approximate mass of the floating object is approximately 37.99 grams.

Learn more about gravitational potential energy from the given link

https://brainly.com/question/15896499

#SPJ11

In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.

Answers

In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.

The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.

The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.

The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.

The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.

Thus, the correct option is D.

For more details regarding force, visit:

https://brainly.com/question/30507236

#SPJ4

for a particle inside 4 2. plot the wave function and energy infinite Square well.

Answers

The procedures below may be used to draw the wave function and energy infinite square well for a particle inside 4 2.To plot the wave function and energy infinite square well for a particle inside 4 2, follow these steps:

Step 1: Determine the dimensions of the well .The infinite square well has an infinitely high potential barrier at the edges and a finite width. The dimensions of the well must be known to solve the Schrödinger equation.

In this problem, the well is from x = 0 to x = L.

Let's define the boundaries of the well: L = 4.2.

Step 2: Solve the time-independent Schrödinger equation .The next step is to solve the time-independent Schrödinger equation, which is given as:

Hψ(x) = Eψ(x)

where ,

H is the Hamiltonian operator,

ψ(x) is the wave function,

E is the total energy of the particle

x is the position of the particle inside the well.

The Hamiltonian operator for a particle inside an infinite square well is given as:

H = -h²/8π²m d²/dx²

where,

h is Planck's constant,

m is the mass of the particle

d²/dx² is the second derivative with respect to x.

To solve the Schrödinger equation, we assume a wave function, ψ(x), of the form:

ψ(x) = Asin(kx) .

The wave function must be normalized, so:

∫|ψ(x)|²dx = 1

where,

A is a normalization constant.

The energy of the particle is given by:

E = h²k²/8π²m

Substituting the wave function and the Hamiltonian operator into the Schrödinger equation,

we get: -

h²/8π²m d²/dx² Asin(kx) = h²k²/8π²m Asin(kx)

Rearranging and simplifying,

we get:

d²/dx² Asin(kx) + k²Asin(kx) = 0

Dividing by Asin(kx),

we get:

d²/dx² + k² = 0

Solving this differential equation gives:

ψ(x) = Asin(nπx/L)

E = (n²h²π²)/(2mL²)

where n is a positive integer.

The normalization constant, A, is given by:

A = √(2/L)

Step 3: Plot the wave function . The wave function for the particle inside an infinite square well can be plotted using the formula:

ψ(x) = Asin(nπx/L)

The first three wave functions are shown below:

ψ₁(x) = √(2/L)sin(πx/L)ψ₂(x)

= √(2/L)sin(2πx/L)ψ₃(x)

= √(2/L)sin(3πx/L)

Step 4: Plot the energy levels .The energy levels for a particle inside an infinite square well are given by:

E = (n²h²π²)/(2mL²)

The energy levels are quantized and can only take on certain values.

The first three energy levels are shown below:

E₁ = (h²π²)/(8mL²)

E₂ = (4h²π²)/(8mL²)

E₃ = (9h²π²)/(8mL²)

To know more about  wave , visit;

https://brainly.com/question/15663649

#SPJ11

A diatomic ideal gas occupies 4.0 L and pressure of 100kPa. It is compressed adiabatically to 1/4th its original volume, then cooled at constant volume back to its original temperature. Finally, it is allowed to isothermally expand back to
its original volume.
A. Draw a PV diagram B. Find the Heat, Work, and Change in Energy for each process (Fill in Table). Do not assume anything about the net values to fill in the
values for a process.
C. What is net heat and work done?

Answers

A)Draw a PV diagram

PV diagram is drawn by considering its constituent processes i.e. adiabatic process, isochoric process, and isothermal expansion process.

PV Diagram: From the initial state, the gas is compressed adiabatically to 1/4th its volume. This is a curve process and occurs without heat exchange. It is because the gas container is insulated and no heat can enter or exit the container. The second process is cooling at a constant volume. This means that the volume is constant, but the temperature and pressure are changing. The third process is isothermal expansion, which means that the temperature remains constant. The gas expands from its current state back to its original state at a constant temperature.

B) Find the Heat, Work, and Change in Energy for each process

Heat for Adiabatic Compression, Cooling at constant volume, Isothermal Expansion  will be 0, -9600J, 9600J respectively. work will be -7200J, 0J, 7200J respectively. Change in Energy will be -7200J, -9600J, 2400J.

The Heat, Work and Change in Energy are shown in the table below:

Process                                       Heat      Work         Change in Energy

Adiabatic Compression                0         -7200 J          -7200 J

Cooling at constant volume     -9600 J      0                 -9600 J

Isothermal Expansion               9600 J    7200 J           2400 J

Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion= 7200 J + (-7200 J) = 0

Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion= -9600 J + 9600 J = 0

C) What is net heat and work done?

The net heat and work done are both zero.

Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion = 0

Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion = 0

Therefore, the net heat and work done are both zero.

Learn more about work: https://brainly.in/question/22847362

#SPJ11

A laser beam is normally incident on a single slit with width 0.630 mm. A diffraction pattern forms on a screen a distance 1.20 m beyond the slit. The width of the central maximum is 2.38 mm. Calculate the wavelength of the light (in nm).

Answers

"The wavelength of the light is approximately 1.254 nm." The wavelength of light refers to the distance between successive peaks or troughs of a light wave. It is a fundamental property of light and determines its color or frequency. Wavelength is typically denoted by the symbol λ (lambda) and is measured in meters (m).

To calculate the wavelength of the light, we can use the formula for the width of the central maximum in a single slit diffraction pattern:

w = (λ * L) / w

Where:

w is the width of the central maximum (2.38 mm = 0.00238 m)

λ is the wavelength of the light (to be determined)

L is the distance between the slit and the screen (1.20 m)

w is the width of the slit (0.630 mm = 0.000630 m)

Rearranging the formula, we can solve for the wavelength:

λ = (w * w) / L

Substituting the given values:

λ = (0.000630 m * 0.00238 m) / 1.20 m

Calculating this expression:

λ ≈ 1.254e-6 m

To convert this value to nanometers, we multiply by 10^9:

λ ≈ 1.254 nm

Therefore, the wavelength of the light is approximately 1.254 nm.

To know more about wavelength visit:

https://brainly.com/question/29798774

#SPJ11

Other Questions
In triangle ABC the angle bisectors drawn from vertices A and B intersect at point D. Find mm *Can the goal of providing quality and affordable health care to all Americans be reached?please make it long and cite where you got the info from What is Papal Primacy? What affect did this have onrelationships between the church and Western secular governments?Eastern secular governments? Stanford a type of aortic dissection refers toA. De Bakey type IB. De Bakey I and de Bakey IIC. De Bakey IIID. De Bakey II and de Bakey IIIE. De Bakey II In educational settings, what types of decisions do specialists or administrators at higher levels (e.g., district, state, national) typically make from tests? a.Selecting and placing students into programs, counseling and guiding students in career options. b. Evaluating student performance, diagnosing student strengths and difficulties, and adjusting their instructional methods. c. Evaluating the effectiveness of an educational program, deciding whether to continue supporting and allocating money to such programs. Kindly help me answer, i'll rate your responseCompare and contrast Chron's Disease and Ulcerative Colitis, includingthe etiology, pathogenesis, and signs/symptoms of each disorder. Besure to discuss key characteristics that enable health care professionalsto tell the difference between the two diseases.Compare and contrast Marasmus and Kwashiokor. Be sure to discussthe specific nutritional deficiencies involved with each condition and anyunique signs/symptoms (manifestations) related to the deficiencies. Howare the signs/symptoms related to the nutritional deficiencies? Determine the Schwartzschild radius of a black hole equal to the mass of the entire Milky Way galaxy (1.1 X 1011 times the mass of the Sun). When one person shouts at a football game, the sound intensity level at the center of the field is 60.8 dB. When all the people shout together, the intensity level increases to 88.1 dB. Assuming that each person generates the same sound intensity at the center of the field, how many people are at the game? The following is a list of shoe sizes for a group of 13 people.4.5, 9.5, 8, 6.5, 10, 7, 8.5, 6, 7.5, 9, 6, 7, 11Which of the following box plots best represents the numerical data? A box plot using a number line from 3 to 12.25 with tick marks every one-fourth unit. The box extends from 6.25 to 9.25 on the number line. A line in the box is at 7.5. The lines outside the box end at 4.5 and 11. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe. A box plot using a number line from 3 to 11.25 with tick marks every one-fourth unit. The box extends from 6.25 to 8.75 on the number line. A line in the box is at 7.25. The lines outside the box end at 4.5 and 10. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe. A box plot using a number line from 3 to 13 with tick marks every one-half unit. The box extends from 6.5 to 9 on the number line. A line in the box is at 7.5. The lines outside the box end at 4.5 and 12. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe. A box plot using a number line from 3 to 12.5 with tick marks every one-fourth unit. The box extends from 6.25 to 8.75 on the number line. A line in the box is at 7.5. The lines outside the box end at 4.5 and 10.5. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe. Diamagnets have the property that they "dampen" the effects of an external magnetic field by creating an opposing magnetic field. The diamagnet thus has an induced dipole moment that is anti-aligned, such that the induced north pole is closer to the north pole creating the external field. An application of this is that diamagnets can be levitated (Links to an external site.).Now, the mathematics of generally describing a force by a non-uniform field on a dipole is a little beyond the scope of this course, but we can still work through an approximation based on energy. Essentially, whenever the theoretical loss of gravitational potential energy from "falling" no longer can "pay the cost" of increasing the magnetic potential energy, the object no longer wants to fall.Suppose a diamagnetic object floats above the levitator where the magnitude of the magnetic field is 18 T, which is inducing* a magnetic dipole moment of 3.2 Am2 in the object. The magnetic field 2.0 mm below the object is stronger with a magnitude of 33 T. What is the approximate mass of the floating object?Give your answer in units of g (i.e., x10-3 kg), and use g = 9.81 m/s2. You may assume the object's size is negligible. the smell in our office (incense, eucalyptus, floral sprays) also sends messages. what is your impression of a business executive when you walk into her office and it smells likeIncenseFloral spray Select all true statementsQuestion 2 options:If more people decide to save, the supply of loans increases, leading to lower ratesAs the return of productive opportunities increases, more people and businesses will be willing to saveIf more people decide to save, the demand for loans increases, leading to higher ratesAs the return of productive opportunities increases, more people and businesses will be willing to borrow Required information A 35.0-nC charge is placed at the origin and a 57.0 nC charge is placed on the +x-axis, 2.20 cm from the origin. What is the electric potential at a point halfway between these two charges?V = A laser beam is normally incident on a single slit with width 0.630 mm. A diffraction pattern forms on a screen a distance 1.20 m beyond the slit. The width of the central maximum is 2.38 mm. Calculate the wavelength of the light (in nm). for a particle inside 4 2. plot the wave function and energy infinite Square well. who create god? can you tell me? Simple Harmonic Oscillator. For a CO (carbon monoxide) molecule, assume that the system vibrates at o=4.0.1014 [Hz]. a. Wavefunction: Sketch the wave function for the n=5 state of the SHO. Points will be given on qualitative accuracy of the solution. Include a brief description to help me understand critical components of your sketch and label the sketch appropriately. b. Probabilities: Make a qualitatively correct sketch that indicates the probability of finding the state as a function of interatomic separation for n=5 indicate any important features. (Sketch plus 1 sentence). c. Classical turning points: Calculate the probability that the interatomic distance is outside the classically allowed region for the n=1 state Can threats to people's social (i.e. group) identity lead to deviant attitudes and behaviors? Belmi et al. (2015) sought to answer this question. They had 188 self-identified Black American college students and 123 self-identified White American college students complete three sets of self-reported measures. The first set asked whether the student worried about being seen negatively in school because of their ethnicity. The second set asked whether the student felt and expected to be disrespected at school. The final set asked whether the student engaged in delinquent behaviors at school in the past year (e.g. cheating on a test, copying someone else's work, picking a fight, using drugs, etc.). As predicted, the authors found that the more students worried about being seen negatively in school because of their ethnicity, the more likely they were to engage in social deviance, though this relationship occurred only for Black American students. The same finding occurred for the disrespected variable. That is, the more students worried about being seen negatively in school because of their ethnicity, the more likely they felt disrespected. A. Did the study establish covariance (a change in one variable led to a change in the other)? Explain. B. Did the study establish temporal precedence (a change in one variable preceded a change in the other)? Explain. C. Did the study eliminate alternative explanations? Explain. D. Is the study design causal (experimental), correlational, or quasi-experimental? 1 hectare is defined as 1 x 10^4 m^2. 1 acre is 4.356 x 10^4 ft. How many acres are in 2.0 hectares? (Do not include units in your answer). D O Probabilities of outcomes are shown on the branches emanating from a decision node. Question 14 The procedure for mathematically solving decision trees and determining the optimal policy and EMV is called: O sensitivity analysis O folding back (rollback) O policy iteration Orisk profiling Question 15 2 pts 2 pts Suppose a chance/event node has 3 branches. The first two have probabilities of 0.35 and 0.25 associated with them. Write down the probability associated with the third branch.