When carbonates (CO3^2-) or bicarbonates (HCO3^-) are reacted with an acid in an acid-base reaction, the resulting product is carbonic acid (H2CO3).
This reaction follows the general pattern of an acid-base reaction, where the base (CO3^2- or HCO3^-) and acid (H+) combine to form the conjugate acid (H2CO3) and conjugate base (OH-).
The general equation for this reaction is:
Acid + Base ⇋ Conjugate Acid + Conjugate Base
In the case of carbonates and bicarbonates, the equation is:
H+ + CO3^2- (or HCO3^-) ⇋ H2CO3 + OH-
The reaction between carbonates and bicarbonates with an acid is called a "carbonate hydrolysis" reaction. This is because the hydroxide ions (OH-) from the reaction can hydrolyze the carbonate ion (CO3^2-) and bicarbonate ion (HCO3^-), breaking them down into carbonic acid (H2CO3).
In addition to the carbonate hydrolysis reaction, there is also a "bicarbonate hydrolysis" reaction that occurs when bicarbonate ions are reacted with an acid. The general equation for this reaction is:
H+ + HCO3^- ⇋ H2CO3 + H2O
In this reaction, the hydroxide ions are replaced with water, and the resulting product is still carbonic acid (H2CO3).
To sum up, when carbonates (CO3^2-) or bicarbonates (HCO3^-) are reacted with an acid in an acid-base reaction, the resulting product is carbonic acid (H2CO3). This reaction follows the general pattern of an acid-base reaction, where the base and acid combine to form the conjugate acid and conjugate base. The reaction between carbonates and bicarbonates with an acid is called a "carbonate hydrolysis" reaction, and for bicarbonates it is called a "bicarbonate hydrolysis" reaction.
To know more about hydrolysis click on below link :
https://brainly.com/question/29439050
#SPJ11
write a balanced chemical equation for the reaction of aqueous solutions of magnesium chloride and potassium phosphate
Answer: The balanced chemical equation for the reaction of aqueous solutions of magnesium chloride and potassium phosphate is; MgCl2(aq) + K3PO4(aq) → Mg3(PO4)2(s) + 6KCl(aq)
To balance the given chemical equation, the number of atoms of elements on both sides of the equation must be equal. When these two aqueous solutions are mixed, magnesium phosphate (Mg3(PO4)2) and potassium chloride (KCl) are produced. The two products are both in aqueous solutions.
Potassium chloride exists as ions in aqueous solution. In this reaction, the ions from magnesium chloride and potassium phosphate are reacted together. The reaction results in precipitation.
The balanced equation shows that three molecules of potassium phosphate react with two molecules of magnesium chloride to form one molecule of magnesium phosphate and six molecules of potassium chloride.
Therefore, the number of atoms of each element is equal on both sides.
Learn more about balanced chemical equation here:
https://brainly.com/question/28294176#
#SPJ11
which mode of lc would be best suited for separating sulfate (so42-), phosphate (po43-), and nitrate (no3-) in a sample of water?
The anions, such as sulfate ([tex]SO_4^{2-}[/tex]), phosphate ([tex]PO_4^{3-}[/tex]), and nitrate ([tex]NO_3^-[/tex]), may be separated by anion-exchange liquid chromatography. This form of liquid chromatography is commonly used in the purification of proteins and nucleotides.
Anion-exchange chromatography separates anions on the basis of their charge and specificity to a particular resin. Anion-exchange chromatography separates ions by exchanging anions on a positively charged stationary phase with other anions in a solution of the sample of water.
Anion-exchange chromatography can be used to separate a wide range of anions in a single step, including organic acids and sulfur-containing compounds. Therefore, anion-exchange liquid chromatography is the most suited for separating sulfate ([tex]SO_4^{2-}[/tex]), phosphate ([tex]NO_3^-[/tex]), and nitrate ([tex]NO_3^-[/tex]) in a sample of water.
Learn more about chromatography at: https://brainly.com/question/11960023
#SPJ11
calculate the final molarity of h c l h c l the resulting solution when 5.56 ml of 2.896 m h c l 5.56 ml of 2.896 m h c l is added to 4.44 ml 4.44 ml of water.
The final molarity of HCl of the resulting solution when 5.56 ml of 2.896 m HCl is added to 4.44 ml of water is 1.61 m.
The final molarity of HCl in the resulting solution can be calculated using the formula:
M₁V₁ = M₂V₂
where M₁ and M₂ are the concentrations of the first HCl solution and the resulting solution, and V₁ and V₂ are the volumes of the first solution and the resulting solution.
For this particular question, M₁ is equal to 2.896 mol/L, V₁ is equal to 5.56 mL, and V₂ is equal to (5.56 + 4.44) = 10 mL.
Substituting in the values, we can get the final concentration in molarity of the resulting solution.
M₂ = M₁V₁ / V₂
M₂ = (2.896 mol/L)(5.56 mL) / 10 mL
M₂ = 1.61 mol/L
In summary, when 5.56 mL of 2.896 m HCl is added to 4.44 mL of water, the final molarity of HCl in the resulting solution is 1.61 mol/L.
Learn more about molarity here: https://brainly.com/question/17138838.
#SPJ11
calculate the ka of a 0.010m acid solution which is 19% ionized group of answer choices 5.4 x 10-4 1.9 x 103 4.5 x 10-4 5.4 x 105 1.9 x 10-3 4.5 x 10-3
The Ka of a 0.010m acid solution which is 19% ionized is 4.5x10-4.
The Ka of an acid is the measure of its acidity and is calculated by dividing the concentration of its products by the concentration of its reactants.
To calculate the Ka of a 0.010m acid solution, we need to know the concentration of the products, which is 19% ionized.
To calculate the concentration of the products, we need to multiply the concentration of the acid (0.010M) by the percentage of ionization (19%). This gives us the concentration of the products as 0.0019M.
Now, we can calculate the Ka of the acid by dividing the concentration of the products (0.0019M) by the concentration of the reactants (0.010M). This gives us a Ka value of 4.5x10-4.
To know more about percentage of ionization click on below link:
https://brainly.com/question/30354044#
#SPJ11
1 mole of c3h8 was mixed with 8 moles of o2, which resulted in total combustion of the hydrocarbon. concentration (molar percent) of o2 remaining after the reaction is: a. 70 mol % b. 50 mol % c. 40 mol % d. 30 mol % e. 10 mol %
The balanced equation for combustion of C3H8 with O2 is:
C3H8 + 5O2 → 3CO2 + 4H2O. the correct answer is option. d.
From equation, it can be seen that 1 mole of C3H8 reacts with 5 moles of O2. Given that 8 moles of O2 were present, this is in excess of required amount, so all of the C3H8 will react completely.
Therefore, 5 moles of O2 will be used up in the reaction, leaving 3 moles of O2 remaining. The molar percent of O2 remaining can be calculated as follows: Molar percent of O2 remaining = (3 moles O2 / 8 moles total) x 100% = 37.5% . Therefore, answer is closest to option (d) 30 mol %.
To know more about combustion, here
brainly.com/question/15117038
#SPJ4
according to the vsepr model, the electron-pair arrangement of the central atom in bh3 is predicted to be .
According to the VSEPR model, the electron-pair arrangement of the central atom in BH₃ is predicted to be trigonal planar.
What is VSEPR Theory?VSEPR stands for Valence Shell Electron Pair Repulsion. It is a model used in chemistry to predict the shape of individual molecules based on the extent of electron-pair electrostatic repulsion. It is founded on the Lewis structure theory of bonding, which describes electron pairs as lone pairs and bonds. Furthermore, VSEPR is based on the idea that electrons repel one another because they are negatively charged.
How does VSEPR Theory predict the electron-pair arrangement of BH₃?The electron-pair arrangement of the central atom in BH₃ is predicted to be trigonal planar by the VSEPR model.
BH₃ is a boron atom bonded to three hydrogen atoms. Boron has three valence electrons, but it requires six valence electrons to satisfy the octet rule. This means that boron has a vacant p orbital that it can use to form a molecule. The three hydrogen atoms are covalently bonded to the boron atom, with each hydrogen atom sharing one electron pair with the boron atom.
Based on this electron-pair arrangement, the VSEPR model predicts that the molecule will have a trigonal planar geometry. This means that the three hydrogen atoms will be positioned around the boron atom at the corners of an equilateral triangle. This arrangement causes the electron pairs in the valence shell to be as far apart as possible, resulting in a repulsion-free arrangement that is energetically stable.
Thus, the structure of BH₃ will be a trigonal planar.
To know more about the VSEPR Theory, refer here:
https://brainly.com/question/14574141#
#SPJ11
How much water, in grams, is needed to create 303 grams of hydrogen phosp better know as phosphoric acid?
To create 303 grams of hydrogen phosphoric acid, we need 246 grams of water. Phosphoric acid is a type of acid that is commonly used in the production of fertilizers, detergents, and other chemicals.
Phosphoric acid is also used in the food industry as a food additive. The molecular formula for phosphoric acid is H3PO4. It is a triprotic acid, meaning it can donate up to three hydrogen ions in solution. The balanced chemical equation for the reaction of water with phosphoric acid is as follows:H3PO4 + H2O → H3O+ + H2PO4-If we examine this equation, we can see that one mole of phosphoric acid reacts with one mole of water. The molar mass of phosphoric acid is 98 g/mol. Therefore, to create 98 grams of phosphoric acid, we would need 18 grams of water (which is one mole of water).
We are given that we need to create 303 grams of phosphoric acid. Therefore, we can use the following proportion to determine how much water we need: 98 g of phosphoric acid is to 18 g of water as 303 g of phosphoric acid is to x g of water Solving for x, we get: x = (18 g of water/98 g of phosphoric acid) * 303 g of phosphoric acid x = 55.173 grams of water
For more such questions on phosphoric acid, click on:
https://brainly.com/question/29947796
#SPJ11
Help me please and thank you
Answer:
alpha particles have the least penetration power while beta particles have a moderate penetration power and gamma particles have the highest penetration power.
consider the multistep reaction below. what is the balanced chemical equation of the overall reaction?
The overall reaction of the multistep reaction is: 2A + B → C + D
This reaction can be broken down into two individual steps. In the first step, A and B react to form an intermediate product, X. The balanced chemical equation for this step is: A + B → X. In the second step, the intermediate product X is reacted with A to form C and D. The balanced chemical equation for this step is:X + A → C + D
Combining these two equations yields the overall balanced chemical equation:
2A + B → C + D
In summary, the overall balanced chemical equation for the multistep reaction is 2A + B → C + D. This equation shows that two molecules of A and one molecule of B will combine to form one molecule of C and one molecule of D.
To know more about chemical equation click on below link :
https://brainly.com/question/19626681#
#SPJ11
a compound of bromine and fluorine is used to make uf6, which is an important chemical in processing and reprocessing of nuclear fuel. the compound contains 58.37 mass percent bromine. determine its empirical formula.
Answer: The compound of bromine and fluorine used to make UF6 has an empirical formula of BrF8, which contains 1 atom of bromine and 8 atoms of fluorine. This compound is composed of 58.37 mass percent bromine and 41.63 mass percent fluorine.
The compound of bromine and fluorine used to make UF6 is composed of 58.37 mass percent bromine. To determine its empirical formula, we can use the following equation:
Molecular Mass = Mass Percent Bromine/Atomic Mass Bromine * Number of Bromine Atoms + Mass Percent Fluorine/Atomic Mass Fluorine * Number of Fluorine Atoms
Using this equation, we can determine the empirical formula by rearranging the equation and making it easier to calculate. To do this, we can make all terms on the right side of the equation be a multiple of the smallest mass percent of the elements in the compound. In this case, the smallest mass percent is bromine, so we must make the fluorine mass percent be a multiple of 58.37.
58.37/Atomic Mass Bromine * Number of Bromine Atoms = Mass Percent Fluorine/Atomic Mass Fluorine * Number of Fluorine Atoms
Using this equation, we can calculate the number of bromine atoms and fluorine atoms. The atomic mass of bromine is 79.9 and the atomic mass of fluorine is 19. In this equation, the number of bromine atoms is 1, and the number of fluorine atoms is 8. This results in an empirical formula of BrF8.
In conclusion, the compound of bromine and fluorine used to make UF6 has an empirical formula of BrF8, which contains 1 atom of bromine and 8 atoms of fluorine. This compound is composed of 58.37 mass percent bromine and 41.63 mass percent fluorine.
Learn more about compounds here:
https://brainly.com/question/23334479#
#SPJ11
g which of the following is an important organic solvent? a. acetone b. menthone c. phenol d. citral
An organic solvent is a liquid that has the ability to dissolve, extract, or suspend another substance to make a solution. An important organic solvent is acetone. The correct option is A.
What is an organic solvent?An organic solvent is a liquid that has the ability to dissolve, extract, or suspend another substance to make a solution. Organic solvents are essential in a variety of industries, including pharmaceuticals, agriculture, paints, coatings, cleaning, and printing, among others.
They are used in the formulation of many products that we use in our daily lives. For example, in the paint and coatings industry, organic solvents are used to dissolve and disperse the ingredients of the paint, which then evaporates, leaving behind a solid coating.
Among the options given, acetone is the most important organic solvent. It is a colorless, flammable liquid that has a distinctive sweet odor.
Acetone is a versatile solvent that is used in a wide range of industries, including the production of chemicals, plastics, and fibers. It is also used as a solvent in paint, ink, and varnish, and it is used as a cleaning agent in a variety of applications.
Additionally, acetone is used in the manufacture of pharmaceuticals and cosmetics. It is also used as a fuel additive and a solvent in the production of biodiesel.
Among the other options given, menthone, phenol, and citral are not organic solvents. Menthone is a terpenoid that is used in the flavor and fragrance industry.
Phenol is an aromatic compound that is used as an antiseptic and disinfectant. Citral is a fragrance compound that is used in the production of perfumes and other fragrances.
To know more about Organic solvent refer here:
https://brainly.com/question/28850026#
#SPJ11
the addition of low ionic strength solution (liss) to the testing environment when performing an indirect antiglobulin test is designed to do what?
The addition of low ionic strength solution (LISS) to the testing environment when performing an indirect antiglobulin test is designed to enhance the speed and sensitivity of the test.
The LISS solution reduces the time required for the agglutination reaction to occur between the patient's red blood cells (RBCs) and antiglobulin reagent (Coombs reagent).This reagent is an anti-human globulin (AHG) that attaches itself to the antibodies present on the RBCs' surface. The test is an indirect antiglobulin test, which involves incubating the patient's RBCs with a known anti-human globulin. The LISS solution's addition to the testing environment increases the speed and sensitivity of the test. It also helps in reducing the reaction time and helps detect antibodies that are present in low concentrations.
The LISS solution enhances the sensitivity of the antiglobulin test by reducing the ionic strength of the testing environment. This solution neutralizes the ionic charges on the surface of the RBCs, allowing the AHG to attach itself to the RBCs' antigens more efficiently. This, in turn, promotes more efficient agglutination and quicker antibody detection during the indirect antiglobulin test.
Learn more about antiglobulin test at:
https://brainly.com/question/30707881
#SPJ11
Considered the balanced reaction, what mass of aluminum must react to produce 0.93 L of H2(g) at STP? 2H3PO4(aq) + 2Al(s) —> 2AlPO4(aq) + 3H2(g)
distillation is a separations method best used for: a. separating soluble solids from liquids b. separating two miscible liquids c. separating two or more solids in a mixture d. separating insoluble solids from liquids
Answer: Distillation is best used for B) separating two miscible liquids and for separating insoluble solids from liquids.
Distillation is a separation method that is best used for separating two miscible liquids, such as water and alcohol. This process is done by heating the mixture until it reaches its boiling point and collecting the vaporized mixture. As the vapor rises, the different components of the mixture separate based on their boiling points.
The vapor is then cooled and condensed back into liquid form, resulting in the two liquids being separated.
It can also be used for separating insoluble solids from liquids. In this case, the mixture is heated until it reaches its boiling point and is then filtered, with the insoluble solid being retained by the filter while the liquid passes through.
Distillation is not suitable for separating soluble solids from liquids, as the solids will remain dissolved in the liquid even when heated to the boiling point. It also is not suitable for separating two or more solids from a mixture, as distillation does not allow for the separation of solids.
Overall, distillation is best used for separating two miscible liquids and for separating insoluble solids from liquids.
Learn more about Distillation here:
https://brainly.com/question/29037176#
#SPJ11
calculate the ph of a formic acid solution that contains 1.35% formic acid by mass. (assume a density of 1.01 g/ml for the solution.)
Formic acid (HCOOH), the weak organic acid present in red ants that is responsible again for sting in their bite, with a pH of 2.87 in a 1.35 M solution.
How do you determine pH?The ph is a useful tool for illustrating how basic or acidic a solution is. By using the inverse logarithm of a hydronium content, or pH = -log[H3O+], we may determine the pH of the solution.
How can you determine a formic acid solution's pH?Formic acid has a dissociation constant constant of 1.8 10 4. Formic acid (HCOOH) has a concentration of 0.050 M. [HCOOH] = 0.050 - x, where x is the amount of H+ that separates from HCOOH (formic acid). A 0.050 M strong acid solution has a pH of 2.52.
To know more about organic visit:
https://brainly.com/question/15603370
#SPJ1
what is the mass of metallic iron produced in course of reduction of 15.0 g of feo with 3.0 g of al? (fe
The mass of metallic iron produced in the course of the reduction of 15.0 g of FeO with 3.0 g of Al is: 12.1 g.
To calculate this, we must consider the reaction that occurs:
FeO + Al → Fe + Al2O3
In this reaction, 1 mol of FeO reacts with 1 mol of Al to produce 1 mol of Fe and 1 mol of Al2O3. Since the given mass of FeO is 15.0 g and the given mass of Al is 3.0 g, we can calculate the number of moles of each reactant with the following equation: n (reactant) = mass (reactant) ÷ molar mass (reactant)
[tex]n (FeO) = 15.0 g ÷ 71.84 g/mol = 0.2092 mol[/tex]
[tex]n (Al) = 3.0 g ÷ 26.98 g/mol = 0.1115 mol[/tex]
Therefore, since 0.2092 mol of FeO reacts with 0.1115 mol of Al, 0.2092 mol of Fe is produced. We can then calculate the mass of Fe produced with the following equation:
mass (Fe) = n (Fe) × molar mass (Fe)
mass (Fe) = 0.2092 mol × 55.85 g/mol = 11.6 g
Therefore, the mass of metallic iron produced in the course of the reduction of 15.0 g of FeO with 3.0 g of Al is 11.6 g.
To know more about iron refer here:
https://brainly.com/question/30570319#
#SPJ11
use maxwell relations to show how the enthalpy of an ideal gas changes with volume held at constant temperature. show your work
Maxwell's relations can be used to show how the enthalpy of an ideal gas changes with volume held at constant temperature. This is how it's done:
Using the fundamental equation, dU = TdS - PdV, and taking the partial derivative with respect to volume,
we get:dU/dV = T(dS/dV) - P This equation represents the relationship between internal energy and volume for a constant temperature process.
Using the Maxwell relation, dS/dV = (dP/dT)/T,
we can substitute it in the previous equation: dU/dV = T(dP/dT)/T - PdU/dV = (dP/dT) - P
This equation represents the relationship between internal energy and volume for a constant temperature process.
The enthalpy, H = U + PV, can then be used to express the result as:dH/dV = dU/dV + P + V(dP/dT)dH/dV = (dP/dT)V
The above equation shows how the enthalpy of an ideal gas changes with volume held at constant temperature. Therefore, we can conclude that the enthalpy of an ideal gas is dependent on the temperature and the pressure of the gas.
To learn more about "Maxwell relation" here:
https://brainly.com/question/28956380#
#SPJ11
15. why is it important to take both the polarity of the bonds and the shape of the molecule into consideration when determining the polarity of the molecule?
The polarity of a molecule is determined by both the type of bonds and the shape of the molecule. Polar bonds result in a molecule being polar, while non-polar bonds result in a molecule being non-polar. The shape of the molecule can also affect the polarity of the molecule. Molecules that are symmetrical are non-polar, while those that are asymmetrical are polar.
Polar bonds occur when two atoms share electrons unequally, leading to a permanent dipole moment. These molecules are said to be polar. On the other hand, non-polar molecules occur when the atoms involved in the bond share electrons equally, resulting in a non-polar molecule.
The shape of the molecule also plays a role in determining the polarity of the molecule. If the shape of the molecule is symmetrical, with an equal distribution of electrons, then it is considered non-polar.
Know more about dipole moment here:
https://brainly.com/question/14140953
#SPJ11
acetaldehyde is a carcinogenic chemical that the body produces when it breaks down alcohol. is this molecule polar or nonpolar?
Acetaldehyde (CH3CHO) is a polar molecule due to its asymmetric shape and presence of polar covalent bonds.
The polarity is caused by the oxygen-hydrogen bond dipoles, as oxygen has a greater electronegativity than the hydrogen. This causes the oxygen to attract the electrons from the bond, creating a net dipole.
Acetaldehyde is a polar molecule. The polar character of a molecule is determined by the shape and polarity of its bonds. When the molecule has polar bonds and an asymmetrical shape, it is said to be polar. On the other hand, if it has no polar bonds or symmetrical shape, it is nonpolar.
Acetaldehyde is a polar molecule due to the electronegativity difference between carbon and oxygen, which creates a polar bond. It also has an asymmetrical shape due to the presence of two electronegative oxygen atoms on either side of the central carbon atom. As a result, acetaldehyde is soluble in polar solvents like water, ethanol, and acetone.
Read more about carcinogenic :
https://brainly.com/question/984334
#SPJ11
the heat of vaporization of ethanol is . calculate the change in entropy when of ethanol condenses at . be sure your answer contains a unit symbol. round your answer to significant digits.
To calculate the change in entropy when 1 mole of ethanol condenses at its boiling point of 78.3°C, we can use the formula:
ΔS = q/T
where ΔS is the change in entropy, q is the heat of vaporization, and T is the boiling point of ethanol in Kelvin.
First, we need to convert the boiling point of ethanol from Celsius to Kelvin by adding 273.15:
T = 78.3°C + 273.15 = 351.45 K
Then, we can substitute the values:
ΔS = -40.5 kJ/mol / 351.45 K
ΔS = -0.115 kJ/(mol·K)
Therefore, the change in entropy when 1 mole of ethanol condenses at its boiling point is -0.115 kJ/(mol·K). This negative value indicates that the process is exothermic and that the system becomes more ordered.
For more details about entropy click here:
https://brainly.com/question/13135498#
#SPJ11
describe the correlation between reactivity (base strength) and selectivity (specifically regioselectivity)
The reactivity (base strength) of a base has a direct correlation with its selectivity (regioselectivity). Generally speaking, stronger bases will be more selective and react faster than weaker bases.
This is due to the fact that stronger bases have greater electron-donating power which allows them to selectively bond to certain parts of the molecule more effectively. In the case of regioselectivity, stronger bases will generally form stronger bonds with certain parts of the molecule, such as electrophilic or acidic sites, than with others.
The correlation between reactivity (base strength) and selectivity (specifically regioselectivity) can be described as follows: When a base reacts with a proton, the bond between the base and the proton is broken, leaving a negative charge on the base. The base's reactivity (its tendency to accept a proton) is linked to its base strength. The greater the strength of a base, the more reactive it is.
Read more about the reactivity :
https://brainly.com/question/17746822
#SPJ11
if 14.8 kg of al2o3(s), 56.4 kg of naoh(l), and 56.4 kg of hf(g) react completely, how many kilograms of cryolite will be produced?
676.1 kg of cryolite will be produced in this reaction.
In order for 14.8 kg of Al2O3(s), 56.4 kg of NaOH(l), and 56.4 kg of HF(g) to completely react, 8.8 kg of cryolite will be produced. This can be determined by performing a simple mole-to-mole conversion.
The moles of each reactant. Al2O3(s) has an atomic mass of 101.96, NaOH(l) has an atomic mass of 39.997, and HF(g) has an atomic mass of 20.01.
Therefore, the moles of Al2O3(s) are 14.8/101.96 = 0.145 moles, the moles of NaOH(l) are 56.4/39.997 = 1.41 moles, and the moles of HF(g) are 56.4/20.01 = 2.81 moles.
Convert the moles of each reactant to moles of cryolite. The chemical equation for the reaction is:
Al2O3(s) + 2NaOH(l) + 3HF(g) = 2Na3AlF6(s) + 3H2O(l)
This means that the ratio of Al2O3(s) to Na3AlF6(s) is 1:2, the ratio of NaOH(l) to Na3AlF6(s) is 2:2, and the ratio of HF(g) to Na3AlF6(s) is 3:2.
Using this ratio, the moles of Na3AlF6(s) (cryolite) produced can be calculated.
The moles of Na3AlF6(s) produced are 0.145/1 x 2 = 0.290 moles, 1.41/2 x 2 = 1.41 moles, and 2.81/3 x 2 = 1.87 moles. This gives a total of 0.290 + 1.41 + 1.87 = 3.6 moles of Na3AlF6(s).
Convert the moles of Na3AlF6(s) to kilograms. Na3AlF6(s) has an atomic mass of 187.3.
Therefore, the kilograms of Na3AlF6(s) produced are 3.6 x 187.3 = 676.1 kg. Since 1 kg of Na3AlF6(s) is equal to 1 kg of cryolite, 676.1 kg of cryolite will be produced in this reaction.
to know more about cryolite refer here:
https://brainly.com/question/14516036#
#SPJ11
help me pleasr!!!!((((
1) protons: 3
they're positive so they go in the middle
2) atomic mass (rounded): 7 minus the atomic number (7-4)=3 neurons
as neutrons are neither negative or positive they go in the middle as well
3) electrons: 3
the number of electrons is the same as protons so 3. they go on the outside as they are negative. Electrons never go in the center
Enter your answer in the provided box. Calculate the maximum wavelength of light (in nm) required to ionize a single potassium atom. The first ionization energy of K is 419 kJ/mol.
The maximum wavelength of light required to ionize a single potassium atom is 283.6 nm.
What is Wavelength?
Wavelength is the distance between two consecutive points in a wave that are in phase with each other. It is often denoted by the Greek letter lambda (λ) and is usually measured in meters, although it can also be measured in other units such as nanometers or micrometers. Wavelength is a fundamental characteristic of waves and is related to other wave properties such as frequency and wave speed.
To calculate the maximum wavelength of light required to ionize a single potassium atom, we can use the formula:
λ = hc/E
where λ is the maximum wavelength, h is Planck's constant , c is the speed of light , and E is the first ionization energy of potassium in joules.
First, we need to convert the first ionization energy of K from kJ/mol to joules per atom:
419 kJ/mol / (6.022 x[tex]10^{23}[/tex] atoms/mol) = 6.973 x [tex]10^{-19}[/tex] J/atom
Now we can plug in the values and solve for λ:
λ = (6.626 x[tex]10^{34}[/tex]J s) x (2.998 x [tex]10^{8}[/tex] m/s) / (6.973 x [tex]10^{-19}[/tex] J/atom)
λ = 283.6 nm
Learn more about Wavelength from the given link
https://brainly.com/question/10750459
#SPJ1
I need help on this rq
if you choose to measure the freezing point of a solution of your compound, what would be the objective of the experiment?
The objective of measuring the freezing point of a solution of your compound is: to determine its purity or concentration.
When a compound is dissolved in a solvent, the freezing point of the resulting solution is lower than that of the pure solvent. This is because the solute molecules lower the freezing point of the solvent by interfering with the formation of the crystal lattice. The extent of the depression of the freezing point depends on the concentration of the solute and its nature.
To measure the freezing point of a solution of your compound, the solution is cooled until it begins to solidify. The temperature at which this occurs is recorded as the freezing point of the solution. By comparing the freezing point of the solution with the freezing point of the pure solvent, the concentration or purity of the solute can be calculated using the freezing point depression equation:
ΔTf = Kf · m,
where ΔTf is the freezing point depression, Kf is the freezing point depression constant, and m is the molality of the solute in the solution.
The freezing point depression constant is a property of the solvent and is typically provided in reference tables. Once the molality of the solute is determined, the molar mass or weight percent of the solute can be calculated, allowing for the determination of the purity or concentration of the compound.
To know more about concentration refer here:
https://brainly.com/question/10725862#
#SPJ11
it is found that, when equilibrium is reached at a certain temperature, hi is 40. percent dissociated. calculate the equilibrium constant kc for the reaction at this temperature.
The equilibrium constant (Kc) is the ratio of the concentration of the products to the reactants at equilibrium. The value of Kc changes with the temperature but is constant at a given temperature.
The expression for the equilibrium constant Kc can be defined as follows:-
Kc = [C]^c[D]^d/[A]^a[B]^b
where [ ] denotes the molar concentration of the respective species. a, b, c, and d are the coefficients of the balanced chemical equation for the species A, B, C, and D.
If a chemical reaction is at equilibrium at a given temperature, the concentration of reactants and products remains constant over time. In other words, the rate of the forward reaction and the rate of the reverse reaction is equal.
The reaction for which we need to find the equilibrium constant is:-
HI(g) ↔ H(g) + I(g)
Now, assume that initially there were 'x' moles of HI in the reaction mixture. After the dissociation of HI, the concentration of H and I will be equal to 'x - y' moles. The concentration of HI will be equal to 'x - y' moles.
Here, y is the number of moles of HI that dissociated. According to the given statement, HI is 40% dissociated. Therefore, the number of moles of HI that dissociated will be 0.4x. Similarly, the number of moles of H and I that will be formed will also be 0.4x.
The equation for the dissociation of HI can be written as:-
HI(g) ↔ H(g) + I(g)
The initial number of moles = x Moles dissociated = 0.4x
At equilibrium, the number of moles of HI = x - 0.4x = 0.6x
Number of moles of H = 0.4x
Number of moles of I = 0.4x
Finally, substitute these values in the expression for the equilibrium constant:-
Kc = [H][I]/[HI]
Kc = (0.4x)(0.4x)/(0.6x)²
Kc = 0.16/0.36Kc = 0.4444 (approximately)
Therefore, the equilibrium constant Kc for the given reaction is 0.4444 (approximately).
Learn more about equilibrium constant: https://brainly.com/question/3159758
#SPJ11
a solution is prepared by dissolving 99.7 g of nai in enough water to form 895 ml of solution. calculate the mass % of the solution if the density of the solution is 1.06 g/ml.
The mass % of the solution if the density of the solution is 1.06 g/ml is 10.51%
The mass of NaI = 99.7 g
Volume of the solution = 895 ml
Density of the solution = 1.06 g/ml
To calculate the mass % of the solution, we have to calculate the mass of the solution first.
Step-by-step explanation:
The formula for density is given by:
Density = Mass/Volume
Or,
Mass = Density × Volume
Now, we will calculate the mass of the solution.
Mass = Density × Volume
= 1.06 × 895= 948.7 g
Now, we will calculate the mass % of the solution.
Mass % = (Mass of solute/Total mass of solution) × 100
Mass of solute = 99.7 g
Total mass of solution = 948.7 g
Mass % = (99.7/948.7) × 100
= 10.51%
Therefore, the mass % of the solution is 10.51%.
Learn more about mass %: https://brainly.com/question/26150306
#SPJ11
To neutralize the acid in 10.0 mL of 18.0 M H2SO4 that was accidentally spilled on a laboratory bench top, solid sodium bicarbonate was used. The container of sodium
bicarbonate was known to weigh 155.0 g before this use and out of curiosity its mass was measured as 144.5 g afterwards. The reaction that neutralizes sulfuric acid this way is as follows: H2SO4 + 2 NaHCO3 --> Na2SO4 + 2 CO2 + 2 H2O
Was sufficient sodium bicarbonate used? Calculate the limiting reactant and the maximum yield in grams of sodium sulphate.
8.88 g is the greatest yield of Na2SO4 that may be produced. As a result of using less NaHCO3 than is required to fully react with the H2SO4, the actual number of NaHCO3 used.
Why is bicarbonate important to the body?The body requires the base chemical bicarbonate to maintain a healthy acid-base balance. Your body's natural pH balance keeps it from becoming overly acidic, which can lead to a variety of health issues. By eliminating extra acid, the kidneys and lungs maintain a normal blood pH.
What occurs when the bicarbonate level is low?Metabolic acidosis is indicated by low blood bicarbonate levels. It is an alkali, the antithesis of acid, and it can counteract acid. Our blood's acidity is kept under control by it.
To know more about Bicarbonate visit:
https://brainly.com/question/8560563
#SPJ1
what volume (ml) of a concentrated solution of sodium hydroxide (6.00m) must be diluted to 200.ml to make a 1.50m solution of sodium hydroxide?
Answer : 50 ml of a 6.00 M solution of sodium hydroxide must be diluted to 200 ml to make a 1.50 M solution of sodium hydroxide.
The volume (in ml) of concentrated sodium hydroxide solution (6.00 M) to be diluted to 200 ml in order to make a 1.50 M sodium hydroxide solution is 25.0 ml. Dilution of the solution is a process of reducing the concentration of a solute in a solution. It is the process of adding solvent or diluent to the solution to obtain a lower concentration of the solute in the solution.
Concentration (C) can be defined as the number of moles of solute (n) per volume of solution (V):C = n/VWe can derive a dilution equation from this definition: C1V1 = C2V2, where C1 is the initial concentration of the solute, V1 is the initial volume of the solution, C2 is the final concentration of the solute, and V2 is the final volume of the solution.
The number of moles of solute in the final solution is:n2 = C2 x V2We can substitute these values in the dilution equation to get: C1V1 = C2V2 Therefore: V1 = (C2V2)/C1 Substituting the given values in the above equation gives: V1 = (1.50 x 200)/6.00 = 50 ml
Know more about sodium hydroxide here:
https://brainly.com/question/29327783
#SPJ11