Find the general solution of the differential equation. y^(5) −8y^(4) +16y′′′ −8y′′ +15y′ =0. NOTE: Use c1, c2. c3. c4, and c5 for the arbitrary constants. y(t)= ___

Answers

Answer 1

The general solution of the differential equation is: y(t) = c1e^t + c2te^t + c3t²e^t + c4e^(2t) + c5e^(3t)

Thus, c1, c2, c3, c4, and c5 are arbitrary constants.

To find the general solution of the differential equation y⁵ − 8y⁴ + 16y′′′ − 8y′′ + 15y′ = 0, we follow these steps:

Step 1: Substituting y = e^(rt) into the differential equation, we obtain the characteristic equation:

r⁵ − 8r⁴ + 16r³ − 8r² + 15r = 0

Step 2: Solving the characteristic equation, we factor it as follows:

r(r⁴ − 8r³ + 16r² − 8r + 15) = 0

Using the Rational Root Theorem, we find that the roots are:

r = 1 (with a multiplicity of 3)

r = 2

r = 3

Step 3: Finding the solution to the differential equation using the roots obtained in step 2 and the formula y = c1e^(r1t) + c2e^(r2t) + c3e^(r3t) + c4e^(r4t) + c5e^(r5t).

Therefore, the general solution of the differential equation is:

y(t) = c1e^t + c2te^t + c3t²e^t + c4e^(2t) + c5e^(3t)

Thus, c1, c2, c3, c4, and c5 are arbitrary constants.

Learn more about differential equation

https://brainly.com/question/32645495

#SPJ11


Related Questions

Determine whether each of the following sequences converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE)
An = 9 + 4n3 / n + 3n2 nn = an n3/9n+4 xk = xn = n3 + 3n / an + n4

Answers

The sequences are:1. Divergent2. Convergent (limit = 4/9)3. Convergent (limit = 1/4)

The following sequences are:

Aₙ = 9 + 4n³/n + 3n²  

Nₙ = Aₙ / N = (9 + 4n³/n + 3n²) / n³/9n+4  

Xₖ = Xₙ = n³ + 3n/Aₙ + n⁴

Let us determine whether each of the given sequences converges or diverges:

1. The first sequence is given by Aₙ = 9 + 4n³/n + 3n²Aₙ = 4n³/n + 3n² + 9 / 1

We can say that 4n³/n + 3n² → ∞ as n → ∞

So, the sequence diverges.

2. The second sequence is  

Nₙ = Aₙ / N = (9 + 4n³/n + 3n²) / n³/9n+4

Nₙ = (4/9)(n⁴)/(n⁴) + 4/3n → 4/9 as n → ∞

So, the sequence converges and its limit is 4/9.3. The third sequence is  

Xₖ = Xₙ = n³ + 3n/Aₙ + n⁴Xₖ = Xₙ = (n³/n³)(1 + 3/n²) / (4n³/n³ + 3n²/n³ + 9/n³) + n⁴/n³

The first term converges to 1 and the third term converges to 0. So, the given sequence converges and its limit is 1 / 4.

You can learn more about Convergent at: brainly.com/question/31756849

#SPJ11

3 Conditional and independent probability The probability of Monday being dry is 0-6. If Monday is dry the probability of Tuesday being dry is 0-8. If Monday is wet the probability of Tuesday being dry is 0-4. 1 2 3 4 Show this in a tree diagram What is the probability of both days being dry? What is the probability of both days being wet? What is the probability of exactly one dry day?

Answers

The probability of both days being dry is 0.48 (48%), the probability of both days being wet is 0.08 (8%), and the probability of exactly one dry day is 0.44 (44%).

What is the probability of both days being dry, both days being wet, and exactly one dry day based on the given conditional and independent probabilities?

In the given scenario, we have two events: Monday being dry or wet, and Tuesday being dry or wet. We can represent this situation using a tree diagram:

```

         Dry (0.6)

       /         \

  Dry (0.8)    Wet (0.2)

    /               \

Dry (0.8)       Wet (0.4)

```

The branches represent the probabilities of each event occurring. Now we can answer the questions:

1. The probability of both days being dry is the product of the probabilities along the path: 0.6 ˣ 0.8 = 0.48 (or 48%).

2. The probability of both days being wet is the product of the probabilities along the path: 0.4ˣ  0.2 = 0.08 (or 8%).

3. The probability of exactly one dry day is the sum of the probabilities of the two mutually exclusive paths: 0.6 ˣ  0.2 + 0.4 ˣ  0.8 = 0.12 + 0.32 = 0.44 (or 44%).

By using the tree diagram and calculating the appropriate probabilities, we can determine the likelihood of different outcomes based on the given conditional and independent probabilities.

Learn more about probability

brainly.com/question/31828911

#SPJ11

4. ((4 points) Diamond has an index of refraction of 2.42. What is the speed of light in a diamond?

Answers

The speed of light in diamond is approximately 1.24 x 10⁸ meters per second.

The index of refraction (n) of a given media affects how fast light travels through it. The refractive is given as the speed of light divided by the speed of light in the medium.

n = c / v

Rearranging the equation, we can solve for the speed of light in the medium,

v = c / n

The refractive index of the diamond is given to e 2.42 so we can now replace the values,

v = c / 2.42

Thus, the speed of light in diamond is approximately 1.24 x 10⁸ meters per second.

To know more about refractive index, visit,

https://brainly.com/question/83184

#SPJ4

Consider a radioactive cloud being carried along by the wind whose velocity is

v(x, t) = [(2xt)/(1 + t2)] + 1 + t2.

Let the density of radioactive material be denoted by rho(x, t).

Explain why rho evolves according to

∂rho/∂t + v ∂rho/∂x = −rho ∂v/∂x.

If the initial density is

rho(x, 0) = rho0(x),

show that at later times

rho(x, t) = [1/(1 + t2)] rho0 [(x/ (1 + t2 ))− t]

Answers

we have shown that the expression ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - t] satisfies the advection equation ∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x.

The density of radioactive material, denoted by ρ(x,t), evolves according to the equation:

∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x

This equation describes the transport of a substance by a moving medium, where the rate of movement of the radioactive material is influenced by the velocity of the wind, determined by the function v(x,t).

To solve the equation, we use the method of characteristics. We define the characteristic equation as:

x = ξ(t)

and

ρ(x,t) = f(ξ)

where f is a function of ξ.

Using the method of characteristics, we find that:

∂ρ/∂t = (∂f/∂t)ξ'

∂ρ/∂x = (∂f/∂ξ)ξ'

where ξ' = dξ/dt.

Substituting these derivatives into the original equation, we have:

(∂f/∂t)ξ' + v(∂f/∂ξ)ξ' = -ρ ∂v/∂x

Dividing by ξ', we get:

(∂f/∂t)/(∂f/∂ξ) = -ρ ∂v/∂x / v

Letting k(x,t) = -ρ ∂v/∂x / v, we can integrate the above equation to obtain f(ξ,t). Since f(ξ,t) = ρ(x,t), we can express the solution ρ(x,t) in terms of the initial value of ρ and the function k(x,t).

Now, let's solve the advection equation using the method of characteristics. We define the characteristic equation as:

x = x(t)

Then, we have:

dx/dt = v(x,t)

ρ(x,t) = f(x,t)

We need to find the function k(x,t) such that:

(∂f/∂t)/(∂f/∂x) = k(x,t)

Differentiating dx/dt = v(x,t) with respect to t, we have:

dx/dt = (2xt)/(1 + t^2) + 1 + t^2

Integrating this equation with respect to t, we obtain:

x = (x(0) + 1)t + x(0)t^2 + (1/3)t^3

where x(0) is the initial value of x at t = 0.

To determine the function C(x), we use the initial condition ρ(x,0) = ρ0(x).

Then, we have:

ρ(x,0) = f(x,0) = F[x - C(x), 0]

where F(ξ,0) = ρ0(ξ).

Integrating dx/dt = (2xt)/(1 + t^2) + 1 + t^2 with respect to x, we get:

t = (2/3) ln|2xt + (1 + t^2)x| + C(x)

where C(x) is the constant of integration.

Using the initial condition, we can express the solution f(x,t) as:

f(x,t) = F[x - C(x),t] = ρ0 [(x - C(x))/(1 + t^2)]

To simplify this expression, we introduce A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2). Then, we have:

f(x,t) = [1/(1 +

t^2)] ρ0 [(x - C(x))/(1 + t^2)] = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]

Finally, we can write the solution to the advection equation as:

ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]

where A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2).

Learn more about advection equation here :-

https://brainly.com/question/32107552

#SPJ11

3. Given f(x) = 2x-3 and g(x) = 5x + 4, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (f° g)(x) =
B. Find composite (g° f)(x) =
C. Find composite (f° g)(-3)=
4. Given f(x) = x2 - 8x - 9 and g(x) = x^2+6x + 5, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (fog)(0) =
B. Find composite (fog)(1) =
C. Find composite (g° f)(1) =
5. An envelope is 4 cm longer than it is wide. The area is 96 cm². Find the length & width.
6. Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.

Answers

The three consecutive even integers are -38, -36, and -34.

Given f(x) = 2x-3 and g(x) = 5x + 4, the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (f° g)(x):f(x) = 2x - 3 and g(x) = 5x + 4

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(5x + 4)

= 2(5x + 4) - 3

= 10x + 5

B. Composite (g° f)(x):f(x)

= 2x - 3 and g(x)

= 5x + 4

Let's substitute the value of f(x) in g(x) to obtain the composite of g° f(x) = g(f(x))g(f(x))

= g(2x - 3)

= 5(2x - 3) + 4

= 10x - 11

C. Composite (f° g)(-3):

Let's calculate composite of f° g(-3)

= f(g(-3))f(g(-3))

= f(5(-3) + 4)

= -10 - 3

= -13

Given f(x) = x² - 8x - 9 and

g(x) = x²+ 6x + 5,

the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (fog)(0):f(x) = x² - 8x - 9 and g(x)

= x² + 6x + 5

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(x² + 6x + 5)

= (x² + 6x + 5)² - 8(x² + 6x + 5) - 9

= x⁴ + 12x³ - 31x² - 182x - 184

B. Composite (fog)(1):

Let's calculate composite of f° g(1) = f(g(1))f(g(1))

= f(1² + 6(1) + 5)= f(12)

= 12² - 8(12) - 9

= 111

C. Composite (g° f)(1):

Let's calculate composite of g° f(1) = g(f(1))g(f(1))

= g(2 - 3)

= g(-1)

= (-1)² + 6(-1) + 5= 0

The length and width of an envelope can be calculated as follows:

Solution: Let's assume the width of the envelope to be x.

The length of the envelope will be (x + 4) cm, as per the given conditions.

The area of the envelope is given as 96 cm².

So, the equation for the area of the envelope can be written as: x(x + 4) = 96x² + 4x - 96

= 0(x + 12)(x - 8) = 0

Thus, the width of the envelope is 8 cm and the length of the envelope is (8 + 4) = 12 cm.

Three consecutive even integers whose square difference is 76 can be calculated as follows:

Solution: Let's assume the three consecutive even integers to be x, x + 2, and x + 4.

The square of the third integer is 76 more than the square of the second integer.x² + 8x + 16

= (x + 2)² + 76x² + 8x + 16

= x² + 4x + 4 + 76x² + 4x - 56

= 0x² + 38x - 14x - 56

= 0x(x + 38) - 14(x + 38)

= 0(x - 14)(x + 38)

= 0x = 14 or

x = -38

To know more about integers visit:

https://brainly.com/question/490943

#SPJ11

A coin is tossed four times. What is the probability of getting one tails? A. 1/4
​B. 3/8 C. 1/16
D. 3/16

Answers

he probability of getting one tail when a coin is tossed four times is A.

1/4

When a coin is tossed, there are two possible outcomes: heads (H) or tails (T). Since we are interested in getting exactly one tail, we can calculate the probability by considering the different combinations.

Out of the four tosses, there are four possible positions where the tail can occur: T _ _ _, _ T _ _, _ _ T _, _ _ _ T. The probability of getting one tail is the sum of the probabilities of these four cases.

Each individual toss has a probability of 1/2 of landing tails (T) since there are two equally likely outcomes (heads or tails) for a fair coin. Therefore, the probability of getting exactly one tail is:

P(one tail) = P(T _ _ _) + P(_ T _ _) + P(_ _ T _) + P(_ _ _ T) = (1/2) * (1/2) * (1/2) * (1/2) + (1/2) * (1/2) * (1/2) * (1/2) + (1/2) * (1/2) * (1/2) * (1/2) + (1/2) * (1/2) * (1/2) * (1/2) = 4 * (1/16) = 1/4.

Therefore, the probability of getting one tail when a coin is tossed four times is 1/4, which corresponds to option A.

Learn more about probability in coin toss experiments visit:

https://brainly.com/question/30588999

#SPJ11

(a) Find the work done by a force 5 i^ +3 j^ +2 k^ acting on a body which moves from the origin to the point (3,−1,2). (b) Given u =− i^ +2 j^ −1 k^and v = 2l −1 j^​ +3 k^ . Determine a vector which is perpendicular to both u and v .

Answers

a) The work done by the force F = 5i + 3j + 2k on a body moving from the origin to the point (3, -1, 2) is 13 units.

b) A vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k is -6i - 7j - 3k.

a) The work done by a force F = 5i + 3j + 2k acting on a body that moves from the origin to the point (3, -1, 2) can be determined using the formula:

Work done = ∫F · ds

Where F is the force and ds is the displacement of the body. Displacement is defined as the change in the position vector of the body, which is given by the difference in the position vectors of the final point and the initial point:

s = rf - ri

In this case, s = (3i - j + 2k) - (0i + 0j + 0k) = 3i - j + 2k

Therefore, the work done is:

Work done = ∫F · ds = ∫₀ˢ (5i + 3j + 2k) · (ds)

Simplifying further:

Work done = ∫₀ˢ (5dx + 3dy + 2dz)

Evaluating the integral:

Work done = [5x + 3y + 2z]₀ˢ

Substituting the values:

Work done = [5(3) + 3(-1) + 2(2)] - [5(0) + 3(0) + 2(0)]

Therefore, the work done = 13 units.

b) To find a vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k, we can use the cross product of the two vectors:

u × v = |i j k|

|-1 2 -1|

|2 -1 3|

Expanding the determinant:

u × v = (-6)i - 7j - 3k

Therefore, a vector that is perpendicular to both u and v is given by:

u × v = -6i - 7j - 3k.

Learn more about force

https://brainly.com/question/30507236

#SPJ11

In the figure, the square ABCD and the AABE are standing on the same base AB and between the same parallel lines AB and DE. If BD = 6 cm, find the area of AEB.​

Answers

To find the area of triangle AEB, we use base AB (6 cm) and height 6 cm. Applying the formula (1/2) * base * height, the area is 18 cm².

To find the area of triangle AEB, we need to determine the length of the base AB and the height of the triangle. Since both square ABCD and triangle AABE is standing on the same base AB, the length of AB remains the same for both.

We are given that BD = 6 cm, which means that the length of AB is also 6 cm. Now, to find the height of the triangle, we can consider the height of the square. Since AB is the base of both the square and the triangle, the height of the square is equal to AB.

Therefore, the height of triangle AEB is also 6 cm. Now we can calculate the area of the triangle using the formula: Area = (1/2) * base * height. Plugging in the values, we get Area = (1/2) * 6 cm * 6 cm = 18 cm².

Thus, the area of triangle AEB is 18 square centimeters.

For more questions on the area of a triangle

https://brainly.com/question/30818408

#SPJ8

Jocelyn estimates that a piece of wood measures 5.5 cm. If it actually measures 5.62 cm, what is the percent error of Jocelyn’s estimate?

Answers

Answer:

The percent error is -2.1352% of Jocelyn's estimate.

What is the value of θ for the acute angle in a right triangle? sin(θ)=cos(53°) Enter your answer in the box. θ= °

Answers

Answer:

the value of θ for the acute angle in a right triangle, where sin(θ) = cos(53°), is 37 degrees.

Step-by-step explanation:

In a right triangle, one of the angles is always 90 degrees, which is the right angle. The acute angle in a right triangle is the angle that is smaller than 90 degrees.

To find the value of θ for the acute angle in a right triangle, given that sin(θ) = cos(53°), we can use the trigonometric identity:

sin(θ) = cos(90° - θ)

Since sin(θ) = cos(53°), we can equate them:

cos(90° - θ) = cos(53°)

To find the acute angle θ, we solve for θ by equating the angles inside the cosine function:

90° - θ = 53°

Subtracting 53° from both sides:

90° - 53° = θ

θ= 37°

Therefore, the value of θ for the acute angle in a right triangle, where sin(θ) = cos(53°), is 37 degrees.

Bearing used in an automotive application is supposed to have a nominal inside diameter 1.5 inches. A random sample of 25 bearings is selected, and the average inside diameter of these bearings is 1.4975 inches. Bearing diameter is known to be normally distributed with standard deviation σ=0.1 inch. We want to test the following hypothesis at α=0.01. H0​:μ=1.5,H1​:μ=1.5 (a) Calculate the type II error if the true mean diameter is 1.55 inches. (b) What sample size would be required to detect a true mean diameter as low as 1.55 inches if you wanted the power of the test to be at least 0.9 ?

Answers

(a) Without knowing the effect size, it is not possible to calculate the type II error for the given hypothesis test. (b) To detect a true mean diameter of 1.55 inches with a power of at least 0.9, approximately 65 bearings would be needed.

(a) If the true mean diameter is 1.55 inches, the probability of not rejecting the null hypothesis when it is false (i.e., the type II error) depends on the chosen significance level, sample size, and effect size. Without knowing the effect size, it is not possible to calculate the type II error.

(b) To calculate the required sample size to detect a true mean diameter of 1.55 inches with a power of at least 0.9, we need to know the chosen significance level, the standard deviation of the population, and the effect size.

Using a statistical power calculator or a sample size formula, we can determine that a sample size of approximately 65 bearings is needed.

to know more about  hypothesis test, visit:
brainly.com/question/32874475
#SPJ11

185 said they like dogs
170 said they like cats
86 said they liked both cats and dogs
74 said they don't like cats or dogs.
How many people were surveyed?
Please explain how you got answer

Answers

185 said they like dogs, 170 said they like cats, 86 said they liked both cats and dogs, and 74 said they don't like cats or dogs. The number of people who were surveyed is 515.

The number of people who were surveyed can be found by adding the number of people who liked dogs, the number of people who liked cats, the number of people who liked both, and the number of people who did not like either. So, the total number of people surveyed can be found as follows:

Total number of people who like dogs = 185

Total number of people who like cats = 170

Total number of people who like both = 86

Total number of people who do not like cats or dogs = 74

The total number of people surveyed = Number of people who like dogs + Number of people who like cats + Number of people who like both + Number of people who do not like cats or dogs

= 185 + 170 + 86 + 74= 515

You can learn more about the survey at: brainly.com/question/31624121

#SPJ11

Other Questions
Determine the first three nonzero terms in the Taylor polynomial approximation for the given initial value problem. x +8tx=0;x(0)=1,x (0)=0 The Taylor approximation to three nonzero terms is x(t)=+. Can threats to people's social (i.e. group) identity lead to deviant attitudes and behaviors? Belmi et al. (2015) sought to answer this question. They had 188 self-identified Black American college students and 123 self-identified White American college students complete three sets of self-reported measures. The first set asked whether the student worried about being seen negatively in school because of their ethnicity. The second set asked whether the student felt and expected to be disrespected at school. The final set asked whether the student engaged in delinquent behaviors at school in the past year (e.g. cheating on a test, copying someone else's work, picking a fight, using drugs, etc.). As predicted, the authors found that the more students worried about being seen negatively in school because of their ethnicity, the more likely they were to engage in social deviance, though this relationship occurred only for Black American students. The same finding occurred for the disrespected variable. That is, the more students worried about being seen negatively in school because of their ethnicity, the more likely they felt disrespected. A. Did the study establish covariance (a change in one variable led to a change in the other)? Explain. B. Did the study establish temporal precedence (a change in one variable preceded a change in the other)? Explain. C. Did the study eliminate alternative explanations? Explain. D. Is the study design causal (experimental), correlational, or quasi-experimental? Physics4. Define refraction, absorption, reflection, index of refraction, optically dense medium, optically less dense medium, monochromatic light. Record the following information below. Be sure to clearly notate which number is which parameter. A.) time of five rotations B.) time of one rotation C.) distance from the shoulder to the elbow D.) distance from the shoulder to the middle of the hand. A. What was the average angular speed (degrees/s and rad/s) of the hand? B. What was the average linear speed (m/s) of the hand? C. Are the answers to A and B the same or different? Explain your answer. 1 hectare is defined as 1 x 10^4 m^2. 1 acre is 4.356 x 10^4 ft. How many acres are in 2.0 hectares? (Do not include units in your answer). Correct the italicized sentence fragment shown below. Rewrite it into a complete sentence.Because they were so tired of war.6. Write a sentence that you make up using the word there.7. Write a sentence that you make up using the word their.8. Write a sentence that you make up using the word they're.9. Write a sentence that you make up using the word it's.10. Write a sentence that you make up using the word its. What are the levels of organization from smallest to largest?What is the basic structural and functional unit of an organism?What are 3 components of a feedback system?Describe the following anatomical terms; superior, inferior, anterior/ventral, posterior/dorsal, medial, lateral, ipsilateral, contralateral, proximal, distal, superficial, deep, prone, supine. Evaluate and discuss the requirements of one of the following laws and how it applies in hiring. What does a manager need to do or not do to comply with it? Pregnancy Discrimination Act or Federal labor laws enforced by the National Labor Relations Board (NLRB) including National Labor Relations Act (NLRA) Due: Thursday, July 28, 2022 at B:30 am " thecks on Saturday, fuly 30,2022 at 8:30 am Severe weather con have a significant short-term effect on a restaurant's sales levels fissume you own a restauront chain where business is bikely to be offected by seiere winter weather. How would this impsct the development of your budget? D O Probabilities of outcomes are shown on the branches emanating from a decision node. Question 14 The procedure for mathematically solving decision trees and determining the optimal policy and EMV is called: O sensitivity analysis O folding back (rollback) O policy iteration Orisk profiling Question 15 2 pts 2 pts Suppose a chance/event node has 3 branches. The first two have probabilities of 0.35 and 0.25 associated with them. Write down the probability associated with the third branch. The thicker the PZT element, the ______ the frequency. "All ""Edges"" are ""Boundaries"" within the visual field. True False Correctional boot camps are considered the most unpopularsentencing alternative. Why? What do you believe is a betteralternative? 1. (30 points total) A monochromatized ESCA instrument (equipped with an electron flood gun for charge compensation) is used to acquire data on a sample consisting of a clean platinum (Pt) plate onto which a polymer, polyethylene imine), with the repeat unit structure below, is solvent- deposited: -[CH2CH2NH]n - The binding energy (BE) for carbon in-CH2-groups (referenced to the Fermi level) is 285.0 eV. The BE for the Pt 4F7/2 line (referenced to the Fermi level) is 70.3 eV. The BE for the nitrogen 1s line (imine group) (referenced to the Fermi level) is 399.4 eV. D) For the sample with the poly(ethylene imine) deposited and the electron flood gun switched ON, the C1s speak is seen at 278 eV. What binding energy will the imine N1s peak be seen at? (calculate): Binding Energy = E) In the high resolution carbon 1s spectrum, how many peaks can be readily resolved from the peak envelope seen? (circle one) 1 2 2 3 4 8.667 points A study has high "reliability" if the questions accurately measure what the researcher intended to measure. True False Discuss results-based monitoring versus traditional monitoring. [ 20 Marks] NOTE: well paragraphing and clear formatting The magnetic force on a straight wire 0.30 m long is 2.6 x 10^-3 N. The current in the wire is 15.0 A. What is the magnitude of the magnetic field that is perpendicular to the wire? 100 words sample of how a class prefect works? Which part of the report takes most of the writers time todevelop?Group of answer choicesThe introductionThe referencesThe memoThe discussion Cul es el costo de un pltano si el racimo de 22 pltanos cuesta $23.10?