Calculate the energies of the first four rotational levels of1H127 I free to rotate in three dimensions,using for its moment of inertia I=μR2, with μ=mHmI/(mH+mI) and R = 160 pm

Answers

Answer 1

The energies of the first four rotational levels of 1H127I can be calculated using the formula:

E = B(J(J+1))

where B is the rotational constant, J is the rotational quantum number, and h and c are Planck's constant and the speed of light, respectively.

The rotational constant can be calculated using the moment of inertia formula I=μR^2 as follows:

B = h/(8π^2cI)

where h is Planck's constant, c is the speed of light, and I is the moment of inertia.

Substituting the given values we get:

μ = mHmI/(mH+mI) = (1.0078 amu * 126.9045 amu)/(1.0078 amu + 126.9045 amu) = 1.002 amu

I = μR^2 = (1.002 amu)(160 pm)^2 = 0.004921 kg m^2

B = h/(8π^2cI) = (6.626 x 10^-34 Js)/(8π^2 x 3 x 10^8 m/s x 0.004921 kg m^2) = 2.921 x 10^-23 J

Using the formula above, the energies of the first four rotational levels are:

E1 = B(1(1+1)) = 2B = 5.842 x 10^-23 J

E2 = B(2(2+1)) = 6B = 1.7526 x 10^-22 J

E3 = B(3(3+1)) = 12B = 3.5051 x 10^-22 J

E4 = B(4(4+1)) = 20B = 5.842 x 10^-22 J

Learn more about Plank's constant here:

brainly.com/question/2289138

#SPJ11


Related Questions

A diatomic ideal gas occupies 4.0 L and pressure of 100kPa. It is compressed adiabatically to 1/4th its original volume, then cooled at constant volume back to its original temperature. Finally, it is allowed to isothermally expand back to
its original volume.
A. Draw a PV diagram B. Find the Heat, Work, and Change in Energy for each process (Fill in Table). Do not assume anything about the net values to fill in the
values for a process.
C. What is net heat and work done?

Answers

A)Draw a PV diagram

PV diagram is drawn by considering its constituent processes i.e. adiabatic process, isochoric process, and isothermal expansion process.

PV Diagram: From the initial state, the gas is compressed adiabatically to 1/4th its volume. This is a curve process and occurs without heat exchange. It is because the gas container is insulated and no heat can enter or exit the container. The second process is cooling at a constant volume. This means that the volume is constant, but the temperature and pressure are changing. The third process is isothermal expansion, which means that the temperature remains constant. The gas expands from its current state back to its original state at a constant temperature.

B) Find the Heat, Work, and Change in Energy for each process

Heat for Adiabatic Compression, Cooling at constant volume, Isothermal Expansion  will be 0, -9600J, 9600J respectively. work will be -7200J, 0J, 7200J respectively. Change in Energy will be -7200J, -9600J, 2400J.

The Heat, Work and Change in Energy are shown in the table below:

Process                                       Heat      Work         Change in Energy

Adiabatic Compression                0         -7200 J          -7200 J

Cooling at constant volume     -9600 J      0                 -9600 J

Isothermal Expansion               9600 J    7200 J           2400 J

Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion= 7200 J + (-7200 J) = 0

Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion= -9600 J + 9600 J = 0

C) What is net heat and work done?

The net heat and work done are both zero.

Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion = 0

Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion = 0

Therefore, the net heat and work done are both zero.

Learn more about work: https://brainly.in/question/22847362

#SPJ11

An RLC series circuit has a 1.00 kΩ resistor, a 130 mH
inductor, and a 25.0 nF capacitor.
(a)
Find the circuit's impedance (in Ω) at 490 Hz.

(b)
Find the circuit's impedance (in Ω) at 7.50 k

Answers

An RLC series circuit has a 1.00 kΩ resistor, a 130 mH inductor, and a 25.0 nF capacitor.(a)The circuit's impedance at 490 Hz is approximately 1013.53 Ω.(b)The circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.

(a) To find the circuit's impedance at 490 Hz, we can use the formula:

Z = √(R^2 + (XL - XC)^2)

where Z is the impedance, R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.

Given:

R = 1.00 kΩ = 1000 Ω

L = 130 mH = 0.130 H

C = 25.0 nF = 25.0 × 10^(-9) F

f = 490 Hz

First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC):

XL = 2πfL

= 2π × 490 × 0.130

≈ 402.12 Ω

XC = 1 / (2πfC)

= 1 / (2π × 490 × 25.0 × 10^(-9))

≈ 129.01 Ω

Now we can calculate the impedance:

Z = √(R^2 + (XL - XC)^2)

= √((1000)^2 + (402.12 - 129.01)^2)

≈ √(1000000 + 27325.92)

≈ √1027325.92

≈ 1013.53 Ω

Therefore, the circuit's impedance at 490 Hz is approximately 1013.53 Ω.

(b) To find the circuit's impedance at 7.50 kHz, we can use the same formula as before:

Z = √(R^2 + (XL - XC)^2)

Given:

f = 7.50 kHz = 7500 Hz

First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC) at this frequency:

XL = 2πfL

= 2π × 7500 × 0.130

≈ 6069.08 Ω

XC = 1 / (2πfC)

= 1 / (2π × 7500 × 25.0 × 10^(-9))

≈ 212.13 Ω

Now we can calculate the impedance:

Z = √(R^2 + (XL - XC)^2)

= √((1000)^2 + (6069.08 - 212.13)^2)

≈ √(1000000 + 36622867.96)

≈ √37622867.96

≈ 6137.02 Ω

Therefore, the circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.

To learn more about reactance visit: https://brainly.com/question/31369031

#SPJ11

3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.

Answers

The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.

The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.

The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.

When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.

The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.

However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

Learn more about spring constant here: brainly.com/question/29975736

#SPJ11

Other Questions
Stanford a type of aortic dissection refers toA. De Bakey type IB. De Bakey I and de Bakey IIC. De Bakey IIID. De Bakey II and de Bakey IIIE. De Bakey II In educational settings, what types of decisions do specialists or administrators at higher levels (e.g., district, state, national) typically make from tests? a.Selecting and placing students into programs, counseling and guiding students in career options. b. Evaluating student performance, diagnosing student strengths and difficulties, and adjusting their instructional methods. c. Evaluating the effectiveness of an educational program, deciding whether to continue supporting and allocating money to such programs. Kindly help me answer, i'll rate your responseCompare and contrast Chron's Disease and Ulcerative Colitis, includingthe etiology, pathogenesis, and signs/symptoms of each disorder. Besure to discuss key characteristics that enable health care professionalsto tell the difference between the two diseases.Compare and contrast Marasmus and Kwashiokor. Be sure to discussthe specific nutritional deficiencies involved with each condition and anyunique signs/symptoms (manifestations) related to the deficiencies. Howare the signs/symptoms related to the nutritional deficiencies? When one person shouts at a football game, the sound intensity level at the center of the field is 60.8 dB. When all the people shout together, the intensity level increases to 88.1 dB. Assuming that each person generates the same sound intensity at the center of the field, how many people are at the game? the smell in our office (incense, eucalyptus, floral sprays) also sends messages. what is your impression of a business executive when you walk into her office and it smells likeIncenseFloral spray Required information A 35.0-nC charge is placed at the origin and a 57.0 nC charge is placed on the +x-axis, 2.20 cm from the origin. What is the electric potential at a point halfway between these two charges?V = A laser beam is normally incident on a single slit with width 0.630 mm. A diffraction pattern forms on a screen a distance 1.20 m beyond the slit. The width of the central maximum is 2.38 mm. Calculate the wavelength of the light (in nm). for a particle inside 4 2. plot the wave function and energy infinite Square well. who create god? can you tell me? Simple Harmonic Oscillator. For a CO (carbon monoxide) molecule, assume that the system vibrates at o=4.0.1014 [Hz]. a. Wavefunction: Sketch the wave function for the n=5 state of the SHO. Points will be given on qualitative accuracy of the solution. Include a brief description to help me understand critical components of your sketch and label the sketch appropriately. b. Probabilities: Make a qualitatively correct sketch that indicates the probability of finding the state as a function of interatomic separation for n=5 indicate any important features. (Sketch plus 1 sentence). c. Classical turning points: Calculate the probability that the interatomic distance is outside the classically allowed region for the n=1 state Can threats to people's social (i.e. group) identity lead to deviant attitudes and behaviors? Belmi et al. (2015) sought to answer this question. They had 188 self-identified Black American college students and 123 self-identified White American college students complete three sets of self-reported measures. The first set asked whether the student worried about being seen negatively in school because of their ethnicity. The second set asked whether the student felt and expected to be disrespected at school. The final set asked whether the student engaged in delinquent behaviors at school in the past year (e.g. cheating on a test, copying someone else's work, picking a fight, using drugs, etc.). As predicted, the authors found that the more students worried about being seen negatively in school because of their ethnicity, the more likely they were to engage in social deviance, though this relationship occurred only for Black American students. The same finding occurred for the disrespected variable. That is, the more students worried about being seen negatively in school because of their ethnicity, the more likely they felt disrespected. A. Did the study establish covariance (a change in one variable led to a change in the other)? Explain. B. Did the study establish temporal precedence (a change in one variable preceded a change in the other)? Explain. C. Did the study eliminate alternative explanations? Explain. D. Is the study design causal (experimental), correlational, or quasi-experimental? D O Probabilities of outcomes are shown on the branches emanating from a decision node. Question 14 The procedure for mathematically solving decision trees and determining the optimal policy and EMV is called: O sensitivity analysis O folding back (rollback) O policy iteration Orisk profiling Question 15 2 pts 2 pts Suppose a chance/event node has 3 branches. The first two have probabilities of 0.35 and 0.25 associated with them. Write down the probability associated with the third branch. Answer the following - show your work! (5 marks): Maximum bending moment: A simply supported rectangular beam that is 3000 mm long supports a point load (P) of 5000 N at midspan (center). Assume that the dimensions of the beams are as follows: b= 127 mm and h = 254 mm, d=254mm. What is the maximum bending moment developed in the beam? What is the overall stress? f = Mmax (h/2)/bd3/12 Mmax = PL/4 According to your text, in some states in the US, over 20% of the black population cannot vote due to felon disenfranchisement. O True O False *14-39. A 1.219-g sample containing (NH4)2SO4, NH4NO3, and nonreactive substances was diluted to 200 mL in a volumetric flask. A 50.00-mL aliquot was made basic with strong alkali, and the liberated NH3 was distilled into 30.00 mL of 0.08421 M HCI. The excess HCI required 10.17 mL of 0.08802 M NaOH for neutralization. A 25.00-mL aliquot of the sample was made alkaline after the addition of Devarda's alloy, and the NO3- was reduced to NH3. The NH3 from both NH4+ and NO3- was then distilled into 30.00mL ofthe standard acid and back-titrated with 14.16 mL of the base. Calculate the percentage of (NH4)2SO4 and NH4NO3 in the sample. Describe what the term "phased (rolling wave) project planning"means. 1. An 8-m-long double pipe heat exchanger is constructed of 4 -std. type M and 3 std type M copper tubing. It is used to cool unused engine oil. The exchanger takes water into the annulus at 10 C at a rate of 2.Ykg/s, which exits at 10.7 C, and oil into the pipe at 140 C at a rate of 0.2 kg/s. Determine the expected outlet temperature of the oil. Assume counter flow. Given that d=4.3 meters and L=3.5 meters, determine the magnitude of the field at point P in N/C. Assume that P is at the midpoint between the spherical charge and the left edge of the rod. The line y = k, where k is a constant, _____ has an inverse. (14.9) Atom 1 of mass 38.5 u and atom 2 of mass 40.5 u are both singly ionized with a charge of +e. After being introduced into a mass spectrometer (see the figure below) and accelerated from rest through a potential difference V = 8.09 kV, each ion follows a circular path in a uniform magnetic field of magnitude B = 0.680 T. What is the distance x between the points where the ions strike the detector?