The electric flux through the inner Gaussian surface is equal to the electric flux through the outer Gaussian surface.
Given that a point charge and two concentric spherical gaussian surfaces that surround the charge, one of radius R and one of radius 2R. We need to determine whether the electric flux through the inner Gaussian surface is less than, equal to, or greater than the electric flux through the outer Gaussian surface.
Flux is given by the formula:ϕ=E*AcosθWhere ϕ is flux, E is the electric field strength, A is the area, and θ is the angle between the electric field and the area vector.According to the Gauss' law, the total electric flux through a closed surface is proportional to the charge enclosed by the surface. Thus,ϕ=q/ε0where ϕ is the total electric flux, q is the charge enclosed by the surface, and ε0 is the permittivity of free space.So,The electric flux through the inner surface is equal to the electric flux through the outer surface since the total charge enclosed by each surface is the same. Therefore,ϕ1=ϕ2
To know more about electric flux:
https://brainly.com/question/30409677
#SPJ11
Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal.
In the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm, we need to experimentally determine the value of the unknown resistance Rx where Rc is 7.3.
If the point of balance of the Wheatstone bridge we built is reached when l2 is 1.8 cm, we have to calculate the experimental value for Rx.
The Wheatstone bridge circuit shown in Figure 3-2 is balanced when the potential difference across point B and D is zero.
This happens when R1/R2 = Rx/R3. Thus, the resistance Rx can be determined as:
Rx = (R1/R2) * R3, where R1, R2, and R3 are the resistances of the resistor in the circuit.
To find R2, we use the slide wire of total length 7.7 cm. We can say that the resistance of the slide wire is proportional to its length.
Thus, the resistance of wire of length l1 would be (R1 / 7.7) l1, and the resistance of wire of length l2 would be (R2 / 7.7) l2.
Using these formulas, the value of R2 can be calculated:
R1 / R2 = (l1 - l2) / l2 => R2
= R1 * l2 / (l1 - l2)
= 3.3 * 1.8 / (7.7 - 1.8)
= 0.905 Ω.
Now that we know the value of R2, we can calculate the value of Rx:Rx = (R1 / R2) * R3 = (3.3 / 0.905) * 7.3 = 26.68 Ω
Therefore, the experimental value for Rx is 26.7 Ω.
To know more about resistance visit:
https://brainly.com/question/32301085
#SPJ11
A conducting sphere of radius a, having a total charge Q, is
situated in an electric field
initially uniform, Eo. Determine the potential at all points
outside the sphere.
The potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a)
We are given that a conducting sphere of radius a, having a total charge Q, is situated in an electric field initially uniform, Eo. We need to determine the potential at all points outside the sphere.Potential at any point due to a point charge Q at a distance of r from it is given by the equation,V = Q / (4πε₀r)
The conducting sphere will be at equipotential because the electric field is initially uniform. Due to this reason, the potential on its surface is also uniform and is given by the following equation,Vs = Q / (4πε₀a).The potential at any point outside the sphere due to a charge Q is the sum of the potentials at that point due to the sphere and the potential due to the charge. Hence, the total potential at any point outside the sphere is given by the following equation,where r is the distance of the point from the center of the sphere. Therefore, the potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a).
For further information on Potential visit :
https://brainly.com/question/33123810
#SPJ11
The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere.
The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere. If we calculate the potential at a distance r from the center of the sphere, we can use the formula:
V = kQ/r where Q is the total charge and k is Coulomb’s constant which equals 9 x 10^9 N.m²/C².
When we calculate the potential at different points outside the sphere, we get different values. When the distance r is infinity, the potential is zero. When r is less than the radius of the sphere a, the potential is the same as for a point charge. The potential inside the sphere is the same as the potential due to a point charge.
Learn more about potential:
https://brainly.com/question/15291588
#SPJ11
An RLC series circuit has a 1.00 kΩ resistor, a 130 mH
inductor, and a 25.0 nF capacitor.
(a)
Find the circuit's impedance (in Ω) at 490 Hz.
Ω
(b)
Find the circuit's impedance (in Ω) at 7.50 k
An RLC series circuit has a 1.00 kΩ resistor, a 130 mH inductor, and a 25.0 nF capacitor.(a)The circuit's impedance at 490 Hz is approximately 1013.53 Ω.(b)The circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.
(a) To find the circuit's impedance at 490 Hz, we can use the formula:
Z = √(R^2 + (XL - XC)^2)
where Z is the impedance, R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.
Given:
R = 1.00 kΩ = 1000 Ω
L = 130 mH = 0.130 H
C = 25.0 nF = 25.0 × 10^(-9) F
f = 490 Hz
First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC):
XL = 2πfL
= 2π × 490 × 0.130
≈ 402.12 Ω
XC = 1 / (2πfC)
= 1 / (2π × 490 × 25.0 × 10^(-9))
≈ 129.01 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √((1000)^2 + (402.12 - 129.01)^2)
≈ √(1000000 + 27325.92)
≈ √1027325.92
≈ 1013.53 Ω
Therefore, the circuit's impedance at 490 Hz is approximately 1013.53 Ω.
(b) To find the circuit's impedance at 7.50 kHz, we can use the same formula as before:
Z = √(R^2 + (XL - XC)^2)
Given:
f = 7.50 kHz = 7500 Hz
First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC) at this frequency:
XL = 2πfL
= 2π × 7500 × 0.130
≈ 6069.08 Ω
XC = 1 / (2πfC)
= 1 / (2π × 7500 × 25.0 × 10^(-9))
≈ 212.13 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √((1000)^2 + (6069.08 - 212.13)^2)
≈ √(1000000 + 36622867.96)
≈ √37622867.96
≈ 6137.02 Ω
Therefore, the circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.
To learn more about reactance visit: https://brainly.com/question/31369031
#SPJ11
A diatomic ideal gas occupies 4.0 L and pressure of 100kPa. It is compressed adiabatically to 1/4th its original volume, then cooled at constant volume back to its original temperature. Finally, it is allowed to isothermally expand back to
its original volume.
A. Draw a PV diagram B. Find the Heat, Work, and Change in Energy for each process (Fill in Table). Do not assume anything about the net values to fill in the
values for a process.
C. What is net heat and work done?
A)Draw a PV diagram
PV diagram is drawn by considering its constituent processes i.e. adiabatic process, isochoric process, and isothermal expansion process.
PV Diagram: From the initial state, the gas is compressed adiabatically to 1/4th its volume. This is a curve process and occurs without heat exchange. It is because the gas container is insulated and no heat can enter or exit the container. The second process is cooling at a constant volume. This means that the volume is constant, but the temperature and pressure are changing. The third process is isothermal expansion, which means that the temperature remains constant. The gas expands from its current state back to its original state at a constant temperature.
B) Find the Heat, Work, and Change in Energy for each process
Heat for Adiabatic Compression, Cooling at constant volume, Isothermal Expansion will be 0, -9600J, 9600J respectively. work will be -7200J, 0J, 7200J respectively. Change in Energy will be -7200J, -9600J, 2400J.
The Heat, Work and Change in Energy are shown in the table below:
Process Heat Work Change in Energy
Adiabatic Compression 0 -7200 J -7200 J
Cooling at constant volume -9600 J 0 -9600 J
Isothermal Expansion 9600 J 7200 J 2400 J
Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion= 7200 J + (-7200 J) = 0
Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion= -9600 J + 9600 J = 0
C) What is net heat and work done?
The net heat and work done are both zero.
Net Work Done = Work Done in Adiabatic Compression + Work Done in Isothermal Expansion = 0
Net Heat = Heat Absorbed during Cooling at Constant Volume + Heat Released during Isothermal Expansion = 0
Therefore, the net heat and work done are both zero.
Learn more about work: https://brainly.in/question/22847362
#SPJ11